These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19245462)

  • 1. Dyestuff-fibre interactions.
    Lewis DM
    Int J Cosmet Sci; 1996 Jun; 18(3):123-35. PubMed ID: 19245462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grafting printing of cellulose fabric with the reactive disperse dyes containing N-substituted 3-chloro-2-hydroxypropyl group.
    Li M; Zhang K; Xie K
    Carbohydr Polym; 2014 Nov; 113():77-82. PubMed ID: 25256461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt-free reactive dyeing of cotton hosiery fabrics by exhaust application of cationic agent.
    Nallathambi A; Venkateshwarapuram Rengaswami GD
    Carbohydr Polym; 2016 Nov; 152():1-11. PubMed ID: 27516243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold Pad-Batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy.
    Khatri Z; Memon MH; Khatri A; Tanwari A
    Ultrason Sonochem; 2011 Nov; 18(6):1301-7. PubMed ID: 21550289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 'Naturalization' of textile disperse dyes through glycoconjugation: the case of a bis(2-hydroxyethyl) group containing azo dye.
    Bianchini R; Catelani G; Cecconi R; D'Andrea F; Frino E; Isaad J; Rolla M
    Carbohydr Res; 2008 Aug; 343(12):2067-74. PubMed ID: 18336806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes.
    Was-Gubala J; Starczak R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():118-25. PubMed ID: 25699701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cationic charge and hydrophobic index of cellulose-based polymers on the semipermanent dyestuff process for hair.
    Ballarin B; Galli S; Mogavero F; Morigi M
    Int J Cosmet Sci; 2011 Jun; 33(3):228-33. PubMed ID: 20807256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evidential value of black cotton fibres.
    Grieve MC; Biermann TW; Davignon M
    Sci Justice; 2001; 41(4):245-60. PubMed ID: 11793882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dichroism measurements in forensic fibre examination. Part 2 - dyed polyamide, wool and silk fibres.
    De Wael K; Vanden Driessche T
    Sci Justice; 2011 Dec; 51(4):163-72. PubMed ID: 22137049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A further study of dye batch variation in textile and carpet fibres.
    Wiggins K; Holness JA
    Sci Justice; 2005; 45(2):93-6. PubMed ID: 16080322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dichroism measurements in forensic fibre examination. Part 4-dyed acrylic and acetate fibres.
    De Wael K
    Sci Justice; 2012 Jun; 52(2):81-9. PubMed ID: 22583499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impacts of synthetic and cellulose-based fibres and their associated dyes on fish hosts and parasite health.
    MacAulay S; Masud N; Davies-Jones J; Ward BD; Cable J
    Environ Sci Pollut Res Int; 2023 Dec; 30(58):121558-121568. PubMed ID: 37955728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-staining relationships in histochemistry and biological staining. II. Mechanistic and practical aspects of the staining of elastic fibres.
    Horobin RW; Flemming L
    J Microsc; 1980 Aug; 119(3):357-72. PubMed ID: 6157820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraneous fibre traces brought by river water - A case study.
    Lepot L; Vanden Driessche T; Lunstroot K; Barret A; Gason F; De Wael K
    Sci Justice; 2017 Jan; 57(1):53-57. PubMed ID: 28063585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sonochemical scouring on the surface morphologies, mechanical properties, and dyeing abilities of wool fibres.
    Pan Y; Hurren CJ; Li Q
    Ultrason Sonochem; 2018 Mar; 41():227-233. PubMed ID: 29137747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and classification of textile fibres using ATR-FT-IR spectroscopy with chemometric methods.
    Peets P; Leito I; Pelt J; Vahur S
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():175-181. PubMed ID: 27643467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of thin layer chromatography and UV microspectrophotometry in the analysis of reactive dyes released from wool and cotton fibers.
    Wiggins KG; Holness JA; March BM
    J Forensic Sci; 2005 Mar; 50(2):364-8. PubMed ID: 15813547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study in relation to the random distribution of four fibre types on clothing (incorporating a review of previous target fibre studies).
    Wiggins K; Drummond P; Champod TH
    Sci Justice; 2004; 44(3):141-8. PubMed ID: 15270452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of a Fluorescent Whitening Molecule and its Application to Wool Fibres.
    Abrar S; Naqvi KR; Javed S; Kiran S; Gulzar T
    Curr Org Synth; 2019; 16(2):314-318. PubMed ID: 31975682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristic dye absorption peaks found in the FTIR spectra of coloured acrylic fibres.
    Grieve MC; Griffin RM; Malone R
    Sci Justice; 1998; 38(1):27-37. PubMed ID: 9624811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.