BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 19245526)

  • 1. Reversal blood flow component as determinant of the arterial functional capability: theoretical implications in physiological and therapeutic conditions.
    Bia D; Zócalo Y; Armentano RL; de Forteza E; Cabrera-Fischer E
    Artif Organs; 2009 Mar; 33(3):266-72. PubMed ID: 19245526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased reversal and oscillatory shear stress cause smooth muscle contraction-dependent changes in sheep aortic dynamics: role in aortic balloon pump circulatory support.
    Bia D; Zócalo Y; Armentano R; Camus J; Forteza Ed; Cabrera-Fischer E
    Acta Physiol (Oxf); 2008 Apr; 192(4):487-503. PubMed ID: 17973954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The endothelium modulates the arterial wall mechanical response to intra-aortic balloon counterpulsation: in vivo studies.
    Bia D; Cabrera-Fischer EI; Zócalo Y; Armentano RL
    Artif Organs; 2011 Sep; 35(9):883-92. PubMed ID: 21848928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulmonary artery smooth muscle activation attenuates arterial dysfunction during acute pulmonary hypertension.
    Santana DB; Barra JG; Grignola JC; Ginés FF; Armentano RL
    J Appl Physiol (1985); 2005 Feb; 98(2):605-13. PubMed ID: 15489257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute increase in reversal blood flow during counterpulsation is associated with vasoconstriction and changes in the aortic mechanics.
    Bia D; Zócalo Y; Armentano R; de Forteza E; Cabrera-Fischer E
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3986-9. PubMed ID: 18002873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Regional differences in viscosity, elasticity and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure-diameter relationship].
    Bia D; Aguirre I; Zócalo Y; Devera L; Cabrera Fischer E; Armentano R
    Rev Esp Cardiol; 2005 Feb; 58(2):167-74. PubMed ID: 15743563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved magnetic resonance angiography and flow-sensitive 4-dimensional magnetic resonance imaging at 3 Tesla for blood flow and wall shear stress analysis.
    Frydrychowicz A; Berger A; Russe MF; Stalder AF; Harloff A; Dittrich S; Hennig J; Langer M; Markl M
    J Thorac Cardiovasc Surg; 2008 Aug; 136(2):400-7. PubMed ID: 18692649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remodeling of arterial wall: Response to changes in both blood flow and blood pressure.
    Hayashi K; Makino A; Kakoi D
    J Mech Behav Biomed Mater; 2018 Jan; 77():475-484. PubMed ID: 29032314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanics of the porcine basilar artery in hypertension.
    Hu JJ; Fossum TW; Miller MW; Xu H; Liu JC; Humphrey JD
    Ann Biomed Eng; 2007 Jan; 35(1):19-29. PubMed ID: 17066325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adventitia-dependent mechanical properties of brachiocephalic ovine arteries in in vivo and in vitro studies.
    Cabrera Fischer EI; Bia D; Camus JM; Zócalo Y; de Forteza E; Armentano RL
    Acta Physiol (Oxf); 2006 Oct; 188(2):103-11. PubMed ID: 16948797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamic consequences of replacing the aorta by vascular grafts simulated in a mathematical model.
    Schulz S; Bauernschmitt R; Schwarzhaupt A; Vahl CF; Kiencke U
    Biomed Sci Instrum; 1997; 34():263-8. PubMed ID: 9603050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic relationships among upper-abdominal aorta and femoral arteries: basis for measurement of arterial blood flow to abdominal-pelvic organs.
    Osada T; Nagata H; Murase N; Shimomura K; Kime R; Shiroishi K; Nakagawa N; Katsumura T
    Med Sci Monit; 2009 Jul; 15(7):CR332-40. PubMed ID: 19564822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fractional derivative model to describe arterial viscoelasticity.
    Craiem D; Armentano RL
    Biorheology; 2007; 44(4):251-63. PubMed ID: 18094449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in vein dynamics ranging from low to high pressure levels as a determinant of the differences in vein adaptation to arterial hemodynamic conditions.
    Zócalo Y; Bia D; Pessana FM; Armentano RL
    Artif Organs; 2007 Jul; 31(7):575-80. PubMed ID: 17584483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arterial remodeling in response to increased blood flow using a constituent-based model.
    Tsamis A; Stergiopulos N
    J Biomech; 2009 Mar; 42(4):531-6. PubMed ID: 19185302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational hemodynamics in the human aorta: a computational fluid dynamics study of three cases with patient-specific geometries and inflow rates.
    Karmonik C; Bismuth JX; Davies MG; Lumsden AB
    Technol Health Care; 2008; 16(5):343-54. PubMed ID: 19126973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural adaptation of microvascular networks and development of hypertension.
    Pries AR; Secomb TW
    Microcirculation; 2002; 9(4):305-14. PubMed ID: 12152106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of arterial wall shear stress on the incremental elasticity of a conduit artery.
    Kelly RF; Snow HM
    Acta Physiol (Oxf); 2011 May; 202(1):1-9. PubMed ID: 21199398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional differences in vein wall dynamics under arterial hemodynamic conditions: comparison with arteries.
    Zócalo Y; Pessana F; Santana DB; Armentano RL
    Artif Organs; 2006 Apr; 30(4):265-75. PubMed ID: 16643385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of intra-aortic counterpulsation on aortic wall energetics and damping: in vivo experiments.
    Fischer EI; Bia D; Camus JM; Zócalo Y; de Forteza E; Armentano RL
    ASAIO J; 2008; 54(1):44-9. PubMed ID: 18204315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.