These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 19245529)
1. Genetic and biochemical properties of an alkaline phosphatase PhoX family protein found in many bacteria. Zaheer R; Morton R; Proudfoot M; Yakunin A; Finan TM Environ Microbiol; 2009 Jun; 11(6):1572-87. PubMed ID: 19245529 [TBL] [Abstract][Full Text] [Related]
2. Cloning of the gene and characterization of the enzymatic properties of the monomeric alkaline phosphatase (PhoX) from Pasteurella multocida strain X-73. Wu JR; Shien JH; Shieh HK; Hu CC; Gong SR; Chen LY; Chang PC FEMS Microbiol Lett; 2007 Feb; 267(1):113-20. PubMed ID: 17156125 [TBL] [Abstract][Full Text] [Related]
3. The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. Sebastian M; Ammerman JW ISME J; 2009 May; 3(5):563-72. PubMed ID: 19212430 [TBL] [Abstract][Full Text] [Related]
5. Identification of the gene for the monomeric alkaline phosphatase of Vibrio cholerae serogroup O1 strain. Majumdar A; Ghatak A; Ghosh RK Gene; 2005 Jan; 344():251-8. PubMed ID: 15656991 [TBL] [Abstract][Full Text] [Related]
6. A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments. Lee DH; Choi SL; Rha E; Kim SJ; Yeom SJ; Moon JH; Lee SG BMC Biotechnol; 2015 Jan; 15(1):1. PubMed ID: 25636680 [TBL] [Abstract][Full Text] [Related]
7. Negative regulation of AAA + ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria. Doucleff M; Chen B; Maris AE; Wemmer DE; Kondrashkina E; Nixon BT J Mol Biol; 2005 Oct; 353(2):242-55. PubMed ID: 16169010 [TBL] [Abstract][Full Text] [Related]
8. A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation. Djordjevic MA; Chen HC; Natera S; Van Noorden G; Menzel C; Taylor S; Renard C; Geiger O; Weiller GF; Mol Plant Microbe Interact; 2003 Jun; 16(6):508-24. PubMed ID: 12795377 [TBL] [Abstract][Full Text] [Related]
9. A DING phosphatase in Thermus thermophilus. Pantazaki AA; Tsolkas GP; Kyriakidis DA Amino Acids; 2008 Apr; 34(3):437-48. PubMed ID: 17497305 [TBL] [Abstract][Full Text] [Related]
10. Functional analysis of a Campylobacter jejuni alkaline phosphatase secreted via the Tat export machinery. van Mourik A; Bleumink-Pluym NMC; van Dijk L; van Putten JPM; Wösten MMSM Microbiology (Reading); 2008 Feb; 154(Pt 2):584-592. PubMed ID: 18227262 [TBL] [Abstract][Full Text] [Related]
11. Structure of dihydropyrimidinase from Sinorhizobium meliloti CECT4114: new features in an amidohydrolase family member. Martínez-Rodríguez S; Martínez-Gómez AI; Clemente-Jiménez JM; Rodríguez-Vico F; García-Ruíz JM; Las Heras-Vázquez FJ; Gavira JA J Struct Biol; 2010 Feb; 169(2):200-8. PubMed ID: 19895890 [TBL] [Abstract][Full Text] [Related]
12. Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. Klotz MG; Schmid MC; Strous M; op den Camp HJ; Jetten MS; Hooper AB Environ Microbiol; 2008 Nov; 10(11):3150-63. PubMed ID: 18761666 [TBL] [Abstract][Full Text] [Related]
13. Characterization and immobilization of a novel SGNH hydrolase (Est24) from Sinorhizobium meliloti. Bae SY; Ryu BH; Jang E; Kim S; Kim TD Appl Microbiol Biotechnol; 2013 Feb; 97(4):1637-47. PubMed ID: 22526795 [TBL] [Abstract][Full Text] [Related]
14. The primary structure of the N-terminal region of mature alkaline phosphatase is critical for secretion and function of the enzyme. Kononova SV; Zolov SN; Krupyanko VI; Nesmeyanova MA Biochemistry (Mosc); 2000 Sep; 65(9):1075-81. PubMed ID: 11042501 [TBL] [Abstract][Full Text] [Related]
15. Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti. Maclean AM; White CE; Fowler JE; Finan TM Mol Plant Microbe Interact; 2009 Sep; 22(9):1116-27. PubMed ID: 19656046 [TBL] [Abstract][Full Text] [Related]
16. Extremely high alkaline protease from a deep-subsurface bacterium, Alkaliphilus transvaalensis. Kobayashi T; Lu J; Li Z; Hung VS; Kurata A; Hatada Y; Takai K; Ito S; Horikoshi K Appl Microbiol Biotechnol; 2007 May; 75(1):71-80. PubMed ID: 17216443 [TBL] [Abstract][Full Text] [Related]
17. A symbiotic mutant of Sinorhizobium meliloti reveals a novel genetic pathway involving succinoglycan biosynthetic functions. Griffitts JS; Long SR Mol Microbiol; 2008 Mar; 67(6):1292-306. PubMed ID: 18284576 [TBL] [Abstract][Full Text] [Related]
18. [Positional analysis of a gene related to salt tolerance in Sinorhizobium meliloti by transposon rescue]. Li XH; Du BH; Zhang XQ; Wang L; Yang SS Yi Chuan Xue Bao; 2004 Jan; 31(1):91-6. PubMed ID: 15468925 [TBL] [Abstract][Full Text] [Related]
19. MotE serves as a new chaperone specific for the periplasmic motility protein, MotC, in Sinorhizobium meliloti. Eggenhofer E; Haslbeck M; Scharf B Mol Microbiol; 2004 May; 52(3):701-12. PubMed ID: 15101977 [TBL] [Abstract][Full Text] [Related]
20. Impairment of twin-arginine-dependent export by seemingly small alterations of substrate conformation. Maurer C; Panahandeh S; Moser M; Müller M FEBS Lett; 2009 Sep; 583(17):2849-53. PubMed ID: 19631648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]