BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 19245653)

  • 61. AMPK and ACC phosphorylation: effect of leptin, muscle fibre type and obesity.
    Janovská A; Hatzinikolas G; Staikopoulos V; McInerney J; Mano M; Wittert GA
    Mol Cell Endocrinol; 2008 Mar; 284(1-2):1-10. PubMed ID: 18255222
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genetic downregulation of AMPK-alpha isoforms uncovers the mechanism by which metformin decreases FA uptake and oxidation in skeletal muscle cells.
    Bogachus LD; Turcotte LP
    Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1549-61. PubMed ID: 20844250
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Controlling skeletal muscle CPT-I malonyl-CoA sensitivity: the importance of AMPK-independent regulation of intermediate filaments during exercise.
    Miotto PM; Steinberg GR; Holloway GP
    Biochem J; 2017 Feb; 474(4):557-569. PubMed ID: 27941154
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Activation of AMP-activated protein kinase, inhibition of pyruvate dehydrogenase activity, and redistribution of substrate partitioning mediate the acute insulin-sensitizing effects of troglitazone in skeletal muscle cells.
    Fediuc S; Pimenta AS; Gaidhu MP; Ceddia RB
    J Cell Physiol; 2008 May; 215(2):392-400. PubMed ID: 17960559
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Chronic AMP-activated protein kinase activation and a high-fat diet have an additive effect on mitochondria in rat skeletal muscle.
    Fillmore N; Jacobs DL; Mills DB; Winder WW; Hancock CR
    J Appl Physiol (1985); 2010 Aug; 109(2):511-20. PubMed ID: 20522731
    [TBL] [Abstract][Full Text] [Related]  

  • 66. LKB1 regulates lipid oxidation during exercise independently of AMPK.
    Jeppesen J; Maarbjerg SJ; Jordy AB; Fritzen AM; Pehmøller C; Sylow L; Serup AK; Jessen N; Thorsen K; Prats C; Qvortrup K; Dyck JR; Hunter RW; Sakamoto K; Thomson DM; Schjerling P; Wojtaszewski JF; Richter EA; Kiens B
    Diabetes; 2013 May; 62(5):1490-9. PubMed ID: 23349504
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise.
    Marcinko K; Steinberg GR
    Exp Physiol; 2014 Dec; 99(12):1581-5. PubMed ID: 25261498
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Intramyocellular lipid accumulation is associated with permanent relocation ex vivo and in vitro of fatty acid translocase (FAT)/CD36 in obese patients.
    Aguer C; Mercier J; Man CY; Metz L; Bordenave S; Lambert K; Jean E; Lantier L; Bounoua L; Brun JF; Raynaud de Mauverger E; Andreelli F; Foretz M; Kitzmann M
    Diabetologia; 2010 Jun; 53(6):1151-63. PubMed ID: 20333349
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Retinoic acid treatment increases lipid oxidation capacity in skeletal muscle of mice.
    Amengual J; Ribot J; Bonet ML; Palou A
    Obesity (Silver Spring); 2008 Mar; 16(3):585-91. PubMed ID: 18239600
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Isoproterenol stimulates 5'-AMP-activated protein kinase and fatty acid oxidation in neonatal hearts.
    Jaswal JS; Lund CR; Keung W; Beker DL; Rebeyka IM; Lopaschuk GD
    Am J Physiol Heart Circ Physiol; 2010 Oct; 299(4):H1135-45. PubMed ID: 20656883
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Regulation of AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation by palmitate in skeletal muscle cells.
    Fediuc S; Gaidhu MP; Ceddia RB
    J Lipid Res; 2006 Feb; 47(2):412-20. PubMed ID: 16304351
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Role of Angptl4/Fiaf in exercise-induced skeletal muscle AMPK activation.
    Chang H; Kwon O; Shin MS; Kang GM; Leem YH; Lee CH; Kim SJ; Roh E; Kim HK; Youn BS; Kim MS
    J Appl Physiol (1985); 2018 Sep; 125(3):715-722. PubMed ID: 29952246
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise.
    Holloway GP; Bezaire V; Heigenhauser GJ; Tandon NN; Glatz JF; Luiken JJ; Bonen A; Spriet LL
    J Physiol; 2006 Feb; 571(Pt 1):201-10. PubMed ID: 16357012
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise.
    Hingst JR; Kjøbsted R; Birk JB; Jørgensen NO; Larsen MR; Kido K; Larsen JK; Kjeldsen SAS; Fentz J; Frøsig C; Holm S; Fritzen AM; Dohlmann TL; Larsen S; Foretz M; Viollet B; Schjerling P; Overby P; Halling JF; Pilegaard H; Hellsten Y; Wojtaszewski JFP
    Mol Metab; 2020 Oct; 40():101028. PubMed ID: 32504885
    [TBL] [Abstract][Full Text] [Related]  

  • 75. AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise.
    Ruderman NB; Park H; Kaushik VK; Dean D; Constant S; Prentki M; Saha AK
    Acta Physiol Scand; 2003 Aug; 178(4):435-42. PubMed ID: 12864749
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle.
    Jørgensen SB; Wojtaszewski JF; Viollet B; Andreelli F; Birk JB; Hellsten Y; Schjerling P; Vaulont S; Neufer PD; Richter EA; Pilegaard H
    FASEB J; 2005 Jul; 19(9):1146-8. PubMed ID: 15878932
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adenosine 5'-monophosphate-activated protein kinase regulation of fatty acid oxidation in skeletal muscle.
    Osler ME; Zierath JR
    Endocrinology; 2008 Mar; 149(3):935-41. PubMed ID: 18202133
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators.
    Lai YC; Kviklyte S; Vertommen D; Lantier L; Foretz M; Viollet B; Hallén S; Rider MH
    Biochem J; 2014 Jun; 460(3):363-75. PubMed ID: 24665903
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Free radical biology for medicine: learning from nonalcoholic fatty liver disease.
    Serviddio G; Bellanti F; Vendemiale G
    Free Radic Biol Med; 2013 Dec; 65():952-968. PubMed ID: 23994574
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice.
    Kong Q; Zhang H; Zhao T; Zhang W; Yan M; Dong X; Li P
    Int J Mol Med; 2016 Dec; 38(6):1715-1726. PubMed ID: 27840945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.