These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 19246657)

  • 21. Locomotor strategies in obese and non-obese children.
    Nantel J; Brochu M; Prince F
    Obesity (Silver Spring); 2006 Oct; 14(10):1789-94. PubMed ID: 17062809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-related changes in mechanical and metabolic energy during typical gait.
    Van de Walle P; Desloovere K; Truijen S; Gosselink R; Aerts P; Hallemans A
    Gait Posture; 2010 Apr; 31(4):495-501. PubMed ID: 20304652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gait characteristics of adults with Down syndrome explain their greater metabolic rate during walking.
    Agiovlasitis S; McCubbin JA; Yun J; Widrick JJ; Pavol MJ
    Gait Posture; 2015 Jan; 41(1):180-4. PubMed ID: 25457480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Obesity does not increase external mechanical work per kilogram body mass during walking.
    Browning RC; McGowan CP; Kram R
    J Biomech; 2009 Oct; 42(14):2273-8. PubMed ID: 19646701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unstable shoes increase energy expenditure of obese patients.
    Maffiuletti NA; Malatesta D; Agosti F; Sartorio A
    Am J Med; 2012 May; 125(5):513-6. PubMed ID: 22482849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of stride frequency on the energy cost of walking in obese teenagers.
    Delextrat A; Matthew D; Cohen DD; Brisswalter J
    Hum Mov Sci; 2011 Feb; 30(1):115-24. PubMed ID: 21168928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of mechanical work and metabolic energy consumption during normal gait.
    Burdett RG; Skrinar GS; Simon SR
    J Orthop Res; 1983; 1(1):63-72. PubMed ID: 6679577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Center of mass motion and the effects of ankle bracing on metabolic cost during submaximal walking trials.
    Herndon SK; Bennett BC; Wolovick A; Filachek A; Gaesser GA; Weltman A; Abel MF
    J Orthop Res; 2006 Dec; 24(12):2170-5. PubMed ID: 17019702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mass-specific energy cost of human walking is set by stature.
    Weyand PG; Smith BR; Puyau MR; Butte NF
    J Exp Biol; 2010 Dec; 213(Pt 23):3972-9. PubMed ID: 21075938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energetics and biomechanics of inclined treadmill walking in obese adults.
    Ehlen KA; Reiser RF; Browning RC
    Med Sci Sports Exerc; 2011 Jul; 43(7):1251-9. PubMed ID: 21200344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of obesity on the biomechanics of walking at different speeds.
    Browning RC; Kram R
    Med Sci Sports Exerc; 2007 Sep; 39(9):1632-41. PubMed ID: 17805097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic cost and mechanical work for the step-to-step transition in walking after successful total ankle arthroplasty.
    Doets HC; Vergouw D; Veeger HE; Houdijk H
    Hum Mov Sci; 2009 Dec; 28(6):786-97. PubMed ID: 19596466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mass-normalized internal mechanical work in walking is not impaired in adults with class III obesity.
    Fernández Menéndez A; Uva B; Favre L; Hans D; Borrani F; Malatesta D
    J Appl Physiol (1985); 2020 Jul; 129(1):194-203. PubMed ID: 32584667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of obesity onset on pendular energy transduction at spontaneous walking speed: Prader-Willi versus nonsyndromal obese individuals.
    Malatesta D; Vismara L; Menegoni F; Grugni G; Capodaglio P
    Obesity (Silver Spring); 2013 Dec; 21(12):E586-91. PubMed ID: 23554340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses.
    Rubenson J; Heliams DB; Maloney SK; Withers PC; Lloyd DG; Fournier PA
    J Exp Biol; 2007 Oct; 210(Pt 20):3513-24. PubMed ID: 17921153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of mechanically and physiologically imposed stiff-knee gait patterns on the energy cost of walking.
    Lewek MD; Osborn AJ; Wutzke CJ
    Arch Phys Med Rehabil; 2012 Jan; 93(1):123-8. PubMed ID: 22200391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual-task effect on gait balance control in adolescents with concussion.
    Howell DR; Osternig LR; Chou LS
    Arch Phys Med Rehabil; 2013 Aug; 94(8):1513-20. PubMed ID: 23643687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanics and energetics of incline walking with robotic ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments.
    Griffin TM; Roberts TJ; Kram R
    J Appl Physiol (1985); 2003 Jul; 95(1):172-83. PubMed ID: 12794096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.