BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19246739)

  • 1. Biological characterization of the zinc site coordinating histidine residues of staphylococcal enterotoxin C2.
    Wang X; Zhang H; Xu M; Cai Y; Liu C; Su Z; Zhang C
    Microbiology (Reading); 2009 Mar; 155(Pt 3):680-686. PubMed ID: 19246739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of superantigen activity and antitumor response of staphylococcal enterotoxin C2 by site-directed mutagenesis.
    Wang X; Xu M; Zhang H; Liu J; Li X; Zhang C
    Cancer Immunol Immunother; 2009 May; 58(5):677-86. PubMed ID: 18818919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a zinc-binding site.
    Papageorgiou AC; Acharya KR; Shapiro R; Passalacqua EF; Brehm RD; Tranter HS
    Structure; 1995 Aug; 3(8):769-79. PubMed ID: 7582894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An engineered superantigen SEC2 exhibits promising antitumor activity and low toxicity.
    Xu M; Wang X; Cai Y; Zhang H; Yang H; Liu C; Zhang C
    Cancer Immunol Immunother; 2011 May; 60(5):705-13. PubMed ID: 21331815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of the disulphide loop mutant of staphylococcal enterotoxin C2.
    Wang X; Xu M; Cai Y; Yang H; Zhang H; Zhang C
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):861-71. PubMed ID: 19082587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological analysis of the deletion mutants of Staphylococcal enterotoxin C2.
    Wang X; Zhang H; Xu M; Liu C; Zhang C
    Appl Microbiol Biotechnol; 2009 Jul; 83(6):1077-84. PubMed ID: 19296099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Enhanced SEC2 mutants and their superantigen activities].
    Zhang G; Xu M; Sun J; Li H; Yang H; Zhang H; Zhang C
    Sheng Wu Gong Cheng Xue Bao; 2013 Jun; 29(6):803-13. PubMed ID: 24063239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and mutational analysis of the histidine residues of staphylococcal enterotoxin A.
    Hoffman M; Tremaine M; Mansfield J; Betley M
    Infect Immun; 1996 Mar; 64(3):885-90. PubMed ID: 8641796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antitumour response of a double mutant of staphylococcal enterotoxin C2 with the decreased affinity for MHC class II molecule.
    Cheng X; Cao P; Ji X; Lu W; Cai X; Hu C; Wang Z; Zhang S
    Scand J Immunol; 2010 Mar; 71(3):169-75. PubMed ID: 20415782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibiting tumor-cell growth by novel truncated staphylococcal enterotoxin C2 mutant.
    Hui J; Xiao F; Li H; Cui X; Liu H; Hu F
    Sheng Wu Gong Cheng Xue Bao; 2011 Jun; 27(6):891-9. PubMed ID: 22034818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Staphylococcus aureus enterotoxin C2 mutants: biological activity assay in vitro.
    Hui J; Cao Y; Xiao F; Zhang J; Li H; Hu F
    J Ind Microbiol Biotechnol; 2008 Sep; 35(9):975-80. PubMed ID: 18506495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Definition of sites on HLA-DR1 involved in the T cell response to staphylococcal enterotoxins E and C2.
    Hargreaves RE; Brehm RD; Tranter H; Warrens AN; Lombardi G; Lechler RI
    Eur J Immunol; 1995 Dec; 25(12):3437-44. PubMed ID: 8566035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological activities of staphylococcal enterotoxin type A mutants with N-terminal substitutions.
    Harris TO; Betley MJ
    Infect Immun; 1995 Jun; 63(6):2133-40. PubMed ID: 7768592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a secondary zinc-binding site in staphylococcal enterotoxin C2. Implications for superantigen recognition.
    Papageorgiou AC; Baker MD; McLeod JD; Goda SK; Manzotti CN; Sansom DM; Tranter HS; Acharya KR
    J Biol Chem; 2004 Jan; 279(2):1297-303. PubMed ID: 14559915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superantigenic staphylococcal exotoxins induce T-cell proliferation in the presence of Langerhans cells or class II-bearing keratinocytes and stimulate keratinocytes to produce T-cell-activating cytokines.
    Tokura Y; Yagi J; O'Malley M; Lewis JM; Takigawa M; Edelson RL; Tigelaar RE
    J Invest Dermatol; 1994 Jan; 102(1):31-8. PubMed ID: 8288908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of microbial superantigen staphylococcal enterotoxin B at 1.5 A resolution: implications for superantigen recognition by MHC class II molecules and T-cell receptors.
    Papageorgiou AC; Tranter HS; Acharya KR
    J Mol Biol; 1998 Mar; 277(1):61-79. PubMed ID: 9514739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural dichotomy of staphylococcal enterotoxin C superantigens leading to MHC class II-independent activation of T lymphocytes.
    Lamphear JG; Bohach GA; Rich RR
    J Immunol; 1998 Mar; 160(5):2107-14. PubMed ID: 9498747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc-mediated dimerization and its effect on activity and conformation of staphylococcal enterotoxin type C.
    Chi YI; Sadler I; Jablonski LM; Callantine SD; Deobald CF; Stauffacher CV; Bohach GA
    J Biol Chem; 2002 Jun; 277(25):22839-46. PubMed ID: 11934896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SEC2-induced superantigen and antitumor activity is regulated through calcineurin.
    Liu Y; Xu M; Zhang H; Li X; Su Z; Zhang C
    Appl Microbiol Biotechnol; 2013 Nov; 97(22):9695-703. PubMed ID: 23435984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations affecting the superantigen activity of staphylococcal enterotoxin B.
    Briggs C; Garcia C; Zhang L; Guan L; Gabriel JL; Rogers TJ
    Immunology; 1997 Feb; 90(2):169-75. PubMed ID: 9135543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.