These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19246743)

  • 1. Is gas-discharge plasma a new solution to the old problem of biofilm inactivation?
    Joaquin JC; Kwan C; Abramzon N; Vandervoort K; Brelles-Mariño G
    Microbiology (Reading); 2009 Mar; 155(Pt 3):724-732. PubMed ID: 19246743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system.
    Vandervoort KG; Brelles-Mariño G
    PLoS One; 2014; 9(10):e108512. PubMed ID: 25302815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Pseudomonas aeruginosa biofilm matrix and cells are drastically impacted by gas discharge plasma treatment: A comprehensive model explaining plasma-mediated biofilm eradication.
    Soler-Arango J; Figoli C; Muraca G; Bosch A; Brelles-Mariño G
    PLoS One; 2019; 14(6):e0216817. PubMed ID: 31233528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmented survival of Neisseria gonorrhoeae within biofilms: exposure to atmospheric pressure non-thermal plasmas.
    Xu L; Tu Y; Yu Y; Tan M; Li J; Chen H
    Eur J Clin Microbiol Infect Dis; 2011 Jan; 30(1):25-31. PubMed ID: 20839022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilms: Microbial Strategies for Surviving UV Exposure.
    de Carvalho CCCR
    Adv Exp Med Biol; 2017; 996():233-239. PubMed ID: 29124704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial mechanism and the effect of atmospheric pressure N
    Wang J; Yu Z; Xu Z; Hu S; Li Y; Xue X; Cai Q; Zhou X; Shen J; Lan Y; Cheng C
    Biofouling; 2018 Sep; 34(8):935-949. PubMed ID: 30477343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential applications of nonthermal plasmas against biofilm-associated micro-organisms in vitro.
    Puligundla P; Mok C
    J Appl Microbiol; 2017 May; 122(5):1134-1148. PubMed ID: 28106311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: a biocidal efficacy study of nonthermal dielectric-barrier discharge plasma.
    Joshi SG; Paff M; Friedman G; Fridman G; Fridman A; Brooks AD
    Am J Infect Control; 2010 May; 38(4):293-301. PubMed ID: 20085853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sterilization of Biofilm on a Titanium Surface Using a Combination of Nonthermal Plasma and Chlorhexidine Digluconate.
    Gupta TT; Karki SB; Matson JS; Gehling DJ; Ayan H
    Biomed Res Int; 2017; 2017():6085741. PubMed ID: 29057263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inactivation of Staphylococcus aureus biofilms using low-power argon plasma in a layer-by-layer approach.
    Traba C; Liang JF
    Biofouling; 2015; 31(1):39-48. PubMed ID: 25569189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Staphylococcus aureus dry-surface biofilms are more resistant to heat treatment than traditional hydrated biofilms.
    Almatroudi A; Tahir S; Hu H; Chowdhury D; Gosbell IB; Jensen SO; Whiteley GS; Deva AK; Glasbey T; Vickery K
    J Hosp Infect; 2018 Feb; 98(2):161-167. PubMed ID: 28919336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of spores by nonthermal plasmas.
    Puligundla P; Mok C
    World J Microbiol Biotechnol; 2018 Sep; 34(10):143. PubMed ID: 30203172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of tannic and gallic acids alone or in combination with carbenicillin or tetracycline on Chromobacterium violaceum CV026 growth, motility, and biofilm formation.
    Dusane DH; O'May C; Tufenkji N
    Can J Microbiol; 2015 Jul; 61(7):487-94. PubMed ID: 26039903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms.
    Alkawareek MY; Algwari QT; Gorman SP; Graham WG; O'Connell D; Gilmore BF
    FEMS Immunol Med Microbiol; 2012 Jul; 65(2):381-4. PubMed ID: 22329678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsed light for the inactivation of fungal biofilms of clinically important pathogenic Candida species.
    Garvey M; Andrade Fernandes JP; Rowan N
    Yeast; 2015 Jul; 32(7):533-40. PubMed ID: 25988542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into discharge argon-mediated biofilm inactivation.
    Traba C; Chen L; Liang D; Azzam R; Liang JF
    Biofouling; 2013; 29(10):1205-13. PubMed ID: 24070412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Susceptibility patterns and the role of extracellular DNA in Staphylococcus epidermidis biofilm resistance to physico-chemical stress exposure.
    Olwal CO; Ang'ienda PO; Onyango DM; Ochiel DO
    BMC Microbiol; 2018 May; 18(1):40. PubMed ID: 29720089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric pressure nonthermal plasmas for bacterial biofilm prevention and eradication.
    Ermolaeva SA; Sysolyatina EV; Gintsburg AL
    Biointerphases; 2015 Jun; 10(2):029404. PubMed ID: 25869456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of quorum-sensing blockers on the formation of marine microbial communities and larval attachment.
    Dobretsov S; Dahms HU; Yili H; Wahl M; Qian PY
    FEMS Microbiol Ecol; 2007 May; 60(2):177-88. PubMed ID: 17371321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of medium composition, flow rate, and signaling compounds on the formation of soluble extracellular materials by biofilms of Chromobacterium violaceum.
    Martinelli D; Bachofen R; Brandl H
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):278-83. PubMed ID: 12111158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.