These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 19247)
1. Nuclear-magnetic-resonance-spectroscopic studies of the amino groups of insulin. Bradbury JH; Brown LR Eur J Biochem; 1977 Jun; 76(2):573-82. PubMed ID: 19247 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the carbamino adducts of insulin. Griffey RH; Scavini M; Eaton RP Biophys J; 1988 Aug; 54(2):295-300. PubMed ID: 3145039 [TBL] [Abstract][Full Text] [Related]
3. Proton-magnetic-resonance studies of the lysine residues of ribonuclease A. Brown LR; Bradbury JH Eur J Biochem; 1975 May; 54(1):219-27. PubMed ID: 238843 [TBL] [Abstract][Full Text] [Related]
4. Fluorine nuclear magnetic resonance studies of trifluoroacetyl-insulin derivatives. Effects of pH on conformation and aggregation. Paselk RA; Levy D Biochemistry; 1974 Jul; 13(16):3340-6. PubMed ID: 4841066 [No Abstract] [Full Text] [Related]
5. pH and temperature effects on the molecular conformation of the porcine pancreatic secretory trypsin inhibitor as detected by hydrogen-1 nuclear magnetic resonance. De Marco A; Menegatti E; Guarneri M Biochemistry; 1982 Jan; 21(2):222-9. PubMed ID: 6803827 [TBL] [Abstract][Full Text] [Related]
6. Two-dimensional NMR and photo-CIDNP studies of the insulin monomer: assignment of aromatic resonances with application to protein folding, structure, and dynamics. Weiss MA; Nguyen DT; Khait I; Inouye K; Frank BH; Beckage M; O'Shea E; Shoelson SE; Karplus M; Neuringer LJ Biochemistry; 1989 Dec; 28(25):9855-73. PubMed ID: 2692717 [TBL] [Abstract][Full Text] [Related]
7. Conformational analysis by nuclear magnetic resonance: insulin. Williamson KL; Williams RJ Biochemistry; 1979 Dec; 18(26):5966-72. PubMed ID: 574774 [TBL] [Abstract][Full Text] [Related]
8. Physical studies of 13C-methylated concanavalin A. pH- and Co2+-induced nuclear magnetic resonance shifts. Sherry AD; Teherani J J Biol Chem; 1983 Jul; 258(14):8663-9. PubMed ID: 6863304 [TBL] [Abstract][Full Text] [Related]
9. Specific 13C reductive methylation of glycophorin A. Possible relation of the N-terminal amino acid and the lysine residues to MN blood group specificities. Hardy RE; Batstone-Cunningham RL; Dill K Arch Biochem Biophys; 1983 Apr; 222(1):222-30. PubMed ID: 6404224 [TBL] [Abstract][Full Text] [Related]
10. Nuclear-magnetic-resonance studies on the conformations of tridecapeptide alpha-mating factor from yeast Saccharomyces cerevisiae and analog peptides in aqueous solution. Conformation-activity relationship. Higashijima T; Masui Y; Chino N; Sakakibara S; Kita H; Miyazawa T Eur J Biochem; 1984 Apr; 140(1):163-71. PubMed ID: 6323177 [TBL] [Abstract][Full Text] [Related]
11. Intramolecular interactions of amino groups in 13C reductively methylated hen egg-white lysozyme. Gerken TA; Jentoft JE; Jentoft N; Dearborn DG J Biol Chem; 1982 Mar; 257(6):2894-900. PubMed ID: 7061454 [TBL] [Abstract][Full Text] [Related]
12. Proton-NMR studies of the effects of ionic strength and pH on the hyperfine-shifted resonances and phenylalanine-82 environment of three species of mitochondrial ferricytochrome c. Moench SJ; Shi TM; Satterlee JD Eur J Biochem; 1991 May; 197(3):631-41. PubMed ID: 1851480 [TBL] [Abstract][Full Text] [Related]
13. Amine inversion in proteins. A 13C-NMR study of proton exchange and nitrogen inversion rates in N epsilon,N epsilon,N alpha,N alpha-[13C]tetramethyllysine,N epsilon,N epsilon,N alpha,N alpha-[13C]tetramethyllysine methyl ester, and reductively methylated concanavalin A. Goux WJ; Teherani J; Sherry AD Biophys Chem; 1984 Jun; 19(4):363-73. PubMed ID: 6430360 [TBL] [Abstract][Full Text] [Related]
14. 1H n.m.r. studies of insulin. Reversible transformation of 2-zinc to 4-zinc insulin hexamer. Ramesh V; Bradbury JH Int J Pept Protein Res; 1986 Aug; 28(2):146-53. PubMed ID: 3533813 [TBL] [Abstract][Full Text] [Related]
15. A study of the lysyl residues in the basic pancreatic trypsin inhibitor using 1H nuclear magnetic resonance at 360 Mhz. Brown LR; De Marco A; Wagner G; Wüthrich K Eur J Biochem; 1976 Feb; 62(1):103-7. PubMed ID: 2474 [TBL] [Abstract][Full Text] [Related]
16. Solution structure of an engineered insulin monomer at neutral pH. Olsen HB; Ludvigsen S; Kaarsholm NC Biochemistry; 1996 Jul; 35(27):8836-45. PubMed ID: 8688419 [TBL] [Abstract][Full Text] [Related]
17. C-13 NMR spectral studies of the thyroid hormone transport protein, transthyretin and the pancreatic insulin storage moiety, the zinc-insulin hexamer. Craik DJ; Hall JG; Higgins KA Biochem Biophys Res Commun; 1987 Feb; 143(1):116-25. PubMed ID: 3548723 [TBL] [Abstract][Full Text] [Related]
18. Sequence-specific 1H-NMR assignments for the aromatic region of several biologically active, monomeric insulins including native human insulin. Roy M; Lee RW; Kaarsholm NC; Thøgersen H; Brange J; Dunn MF Biochim Biophys Acta; 1990 Jun; 1053(1):63-73. PubMed ID: 2194578 [TBL] [Abstract][Full Text] [Related]
19. A solution equivalent of the 2Zn----4Zn transformation of insulin in the crystal. Renscheidt H; Strassburger W; Glatter U; Wollmer A; Dodson GG; Mercola DA Eur J Biochem; 1984 Jul; 142(1):7-14. PubMed ID: 6378635 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the Fc fragment from a human IgG1 and its CH2, pFc', and tFc' subfragments. A study using reductive methylation and 13C NMR. Jentoft JE; Rayford R Biochemistry; 1989 Apr; 28(8):3250-7. PubMed ID: 2500969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]