BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19247291)

  • 1. A computational approach to correct arginine-to-proline conversion in quantitative proteomics.
    Park SK; Liao L; Kim JY; Yates JR
    Nat Methods; 2009 Mar; 6(3):184-5. PubMed ID: 19247291
    [No Abstract]   [Full Text] [Related]  

  • 2. An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics.
    Van Hoof D; Pinkse MW; Oostwaard DW; Mummery CL; Heck AJ; Krijgsveld J
    Nat Methods; 2007 Sep; 4(9):677-8. PubMed ID: 17762871
    [No Abstract]   [Full Text] [Related]  

  • 3. "All proteins all the time"--a comment on visions, claims, and wording in mass spectrometry-based proteomics.
    Lehmann WD
    Anal Bioanal Chem; 2015 Apr; 407(10):2659-63. PubMed ID: 25711985
    [No Abstract]   [Full Text] [Related]  

  • 4. Stable-isotope labeling with amino acids in nematodes.
    Larance M; Bailly AP; Pourkarimi E; Hay RT; Buchanan G; Coulthurst S; Xirodimas DP; Gartner A; Lamond AI
    Nat Methods; 2011 Aug; 8(10):849-51. PubMed ID: 21874007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative top-down proteomics of SILAC labeled human embryonic stem cells.
    Collier TS; Sarkar P; Rao B; Muddiman DC
    J Am Soc Mass Spectrom; 2010 Jun; 21(6):879-89. PubMed ID: 20199872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genetic engineering solution to the "arginine conversion problem" in stable isotope labeling by amino acids in cell culture (SILAC).
    Bicho CC; de Lima Alves F; Chen ZA; Rappsilber J; Sawin KE
    Mol Cell Proteomics; 2010 Jul; 9(7):1567-77. PubMed ID: 20460254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SILAC Mass Spectrometry Profiling: A Psychiatric Disorder Perspective.
    Duque-Guimarães D; Ong TP; de Almeida-Faria J; Guest PC; Ozanne SE
    Adv Exp Med Biol; 2017; 974():289-298. PubMed ID: 28353248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trypsin cleaves exclusively C-terminal to arginine and lysine residues.
    Olsen JV; Ong SE; Mann M
    Mol Cell Proteomics; 2004 Jun; 3(6):608-14. PubMed ID: 15034119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevention of amino acid conversion in SILAC experiments with embryonic stem cells.
    Bendall SC; Hughes C; Stewart MH; Doble B; Bhatia M; Lajoie GA
    Mol Cell Proteomics; 2008 Sep; 7(9):1587-97. PubMed ID: 18487603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current trends in quantitative proteomics.
    Elliott MH; Smith DS; Parker CE; Borchers C
    J Mass Spectrom; 2009 Dec; 44(12):1637-60. PubMed ID: 19957301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions.
    Lössner C; Warnken U; Pscherer A; Schnölzer M
    Anal Biochem; 2011 May; 412(1):123-5. PubMed ID: 21241653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analysis of quantitative proteomics data using stable isotope labeling.
    MacCoss MJ; Wu CC
    Methods Mol Biol; 2007; 359():177-89. PubMed ID: 17484118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. moFF: a robust and automated approach to extract peptide ion intensities.
    Argentini A; Goeminne LJ; Verheggen K; Hulstaert N; Staes A; Clement L; Martens L
    Nat Methods; 2016 Nov; 13(12):964-966. PubMed ID: 27898063
    [No Abstract]   [Full Text] [Related]  

  • 14. Recent developments in proteome informatics for mass spectrometry analysis.
    Wright JC; Hubbard SJ
    Comb Chem High Throughput Screen; 2009 Feb; 12(2):194-202. PubMed ID: 19199887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of metabolic labeling for comparative proteomics in breast cancer cells.
    Gehrmann ML; Hathout Y; Fenselau C
    J Proteome Res; 2004; 3(5):1063-8. PubMed ID: 15473696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RABA (reductive alkylation by acetone): a novel stable isotope labeling approach for quantitative proteomics.
    Zhai J; Liu X; Huang Z; Zhu H
    J Am Soc Mass Spectrom; 2009 Jul; 20(7):1366-77. PubMed ID: 19419886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. APP: an Automated Proteomics Pipeline for the analysis of mass spectrometry data based on multiple open access tools.
    Malm EK; Srivastava V; Sundqvist G; Bulone V
    BMC Bioinformatics; 2014 Dec; 15(1):441. PubMed ID: 25547515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating Lys-N proteolysis and N-terminal guanidination for improved fragmentation and relative quantification of singly-charged ions.
    Carabetta VJ; Li T; Shakya A; Greco TM; Cristea IM
    J Am Soc Mass Spectrom; 2010 Jun; 21(6):1050-60. PubMed ID: 20207164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable isotope labeling of mammals (SILAM) for in vivo quantitative proteomic analysis.
    Rauniyar N; McClatchy DB; Yates JR
    Methods; 2013 Jun; 61(3):260-8. PubMed ID: 23523555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysine Propionylation To Boost Sequence Coverage and Enable a "Silent SILAC" Strategy for Relative Protein Quantification.
    Schräder CU; Moore S; Goodarzi AA; Schriemer DC
    Anal Chem; 2018 Aug; 90(15):9077-9084. PubMed ID: 29975514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.