These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 19247635)

  • 1. The road to linearity: why linearity at low doses became the basis for carcinogen risk assessment.
    Calabrese EJ
    Arch Toxicol; 2009 Mar; 83(3):203-25. PubMed ID: 19247635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of the linearity no threshold (LNT) dose-response concept.
    Calabrese EJ
    Arch Toxicol; 2013 Sep; 87(9):1621-33. PubMed ID: 23887208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Key studies used to support cancer risk assessment questioned.
    Calabrese EJ
    Environ Mol Mutagen; 2011 Oct; 52(8):595-606. PubMed ID: 21786337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An abuse of risk assessment: how regulatory agencies improperly adopted LNT for cancer risk assessment.
    Calabrese EJ
    Arch Toxicol; 2015 Apr; 89(4):647-8. PubMed ID: 25596944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The debate on the use of linear no threshold for assessing the effects of low doses.
    Tubiana M; Aurengo A; Averbeck D; Masse R
    J Radiol Prot; 2006 Sep; 26(3):317-24. PubMed ID: 16926474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of in vivo mutation data can inform cancer risk assessment.
    Moore MM; Heflich RH; Haber LT; Allen BC; Shipp AM; Kodell RL
    Regul Toxicol Pharmacol; 2008 Jul; 51(2):151-61. PubMed ID: 18321622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges to default assumptions stimulate comprehensive realism as a new tier in quantitative cancer risk assessment.
    Sielken RL; Bretzlaff RS; Stevenson DE
    Regul Toxicol Pharmacol; 1995 Apr; 21(2):270-80. PubMed ID: 7644717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How the US National Academy of Sciences misled the world community on cancer risk assessment: new findings challenge historical foundations of the linear dose response.
    Calabrese EJ
    Arch Toxicol; 2013 Dec; 87(12):2063-81. PubMed ID: 23912675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer risk assessment foundation unraveling: new historical evidence reveals that the US National Academy of Sciences (US NAS), Biological Effects of Atomic Radiation (BEAR) Committee Genetics Panel falsified the research record to promote acceptance of the LNT.
    Calabrese EJ
    Arch Toxicol; 2015 Apr; 89(4):649-50. PubMed ID: 25600588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk assessment of chemical carcinogens and thresholds.
    Neumann HG
    Crit Rev Toxicol; 2009; 39(6):449-61. PubMed ID: 19545196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low doses and thresholds in genotoxicity: from theories to experiments.
    Zito R
    J Exp Clin Cancer Res; 2001 Sep; 20(3):315-25. PubMed ID: 11718209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-dose radiation risk extrapolation fallacy associated with the linear-no-threshold model.
    Scott BR
    Hum Exp Toxicol; 2008 Feb; 27(2):163-8. PubMed ID: 18480143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk assessment: the default conservatism controversy.
    Barnard RC
    Regul Toxicol Pharmacol; 1995 Jun; 21(3):431-8. PubMed ID: 7480897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LNT and cancer risk assessment: Its flawed foundations part 1: Radiation and leukemia: Where LNT began.
    Calabrese EJ
    Environ Res; 2021 Jun; 197():111025. PubMed ID: 33744270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population variability in biological adaptive responses to DNA damage and the shapes of carcinogen dose-response curves.
    Conolly RB; Gaylor DW; Lutz WK
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):570-5. PubMed ID: 15996697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of cancer slope factors using different statistical approaches.
    Subramaniam RP; White P; Cogliano VJ
    Risk Anal; 2006 Jun; 26(3):825-30. PubMed ID: 16834636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Prevention of cancer and the dose-effect relationship: the carcinogenic effects of ionizing radiations].
    Tubiana M
    Cancer Radiother; 2009 Jul; 13(4):238-58. PubMed ID: 19539515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muller's Nobel lecture on dose-response for ionizing radiation: ideology or science?
    Calabrese EJ
    Arch Toxicol; 2011 Dec; 85(12):1495-8. PubMed ID: 21717110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences.
    Calabrese EJ
    Environ Pollut; 2005 Dec; 138(3):379-411. PubMed ID: 16098930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Muller to mechanism: How LNT became the default model for cancer risk assessment.
    Calabrese EJ
    Environ Pollut; 2018 Oct; 241():289-302. PubMed ID: 29843011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.