BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 19247732)

  • 1. The role of Kv3-type potassium channels in cerebellar physiology and behavior.
    Joho RH; Hurlock EC
    Cerebellum; 2009 Sep; 8(3):323-33. PubMed ID: 19247732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral motor dysfunction in Kv3-type potassium channel-deficient mice.
    Joho RH; Street C; Matsushita S; Knöpfel T
    Genes Brain Behav; 2006 Aug; 5(6):472-82. PubMed ID: 16923152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of Kv3.3 potassium channel subunits in distinct neuronal populations of mouse brain.
    Chang SY; Zagha E; Kwon ES; Ozaita A; Bobik M; Martone ME; Ellisman MH; Heintz N; Rudy B
    J Comp Neurol; 2007 Jun; 502(6):953-72. PubMed ID: 17444489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rescue of motor coordination by Purkinje cell-targeted restoration of Kv3.3 channels in Kcnc3-null mice requires Kcnc1.
    Hurlock EC; Bose M; Pierce G; Joho RH
    J Neurosci; 2009 Dec; 29(50):15735-44. PubMed ID: 20016089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kv3.3 channels at the Purkinje cell soma are necessary for generation of the classical complex spike waveform.
    Zagha E; Lang EJ; Rudy B
    J Neurosci; 2008 Feb; 28(6):1291-300. PubMed ID: 18256249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.
    Zagha E; Manita S; Ross WN; Rudy B
    J Neurophysiol; 2010 Jun; 103(6):3516-25. PubMed ID: 20357073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allele-dependent changes of olivocerebellar circuit properties in the absence of the voltage-gated potassium channels Kv3.1 and Kv3.3.
    McMahon A; Fowler SC; Perney TM; Akemann W; Knöpfel T; Joho RH
    Eur J Neurosci; 2004 Jun; 19(12):3317-27. PubMed ID: 15217387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K
    Boddum K; Hougaard C; Xiao-Ying Lin J; von Schoubye NL; Jensen HS; Grunnet M; Jespersen T
    Neuropharmacology; 2017 May; 118():102-112. PubMed ID: 28242439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kv3.3 channels harbouring a mutation of spinocerebellar ataxia type 13 alter excitability and induce cell death in cultured cerebellar Purkinje cells.
    Irie T; Matsuzaki Y; Sekino Y; Hirai H
    J Physiol; 2014 Jan; 592(1):229-47. PubMed ID: 24218544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties and expression of Kv3 channels in cerebellar Purkinje cells.
    Sacco T; De Luca A; Tempia F
    Mol Cell Neurosci; 2006 Oct; 33(2):170-9. PubMed ID: 16949837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing.
    Rudy B; McBain CJ
    Trends Neurosci; 2001 Sep; 24(9):517-26. PubMed ID: 11506885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired fast-spiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins.
    Lau D; Vega-Saenz de Miera EC; Contreras D; Ozaita A; Harvey M; Chow A; Noebels JL; Paylor R; Morgan JI; Leonard CS; Rudy B
    J Neurosci; 2000 Dec; 20(24):9071-85. PubMed ID: 11124984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resilient RTN fast spiking in Kv3.1 null mice suggests redundancy in the action potential repolarization mechanism.
    Porcello DM; Ho CS; Joho RH; Huguenard JR
    J Neurophysiol; 2002 Mar; 87(3):1303-10. PubMed ID: 11877504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons.
    Akemann W; Knöpfel T
    J Neurosci; 2006 Apr; 26(17):4602-12. PubMed ID: 16641240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular localization of the voltage-gated potassium channels Kv3.1b and Kv3.3 in the cerebellar dentate nucleus of glutamic acid decarboxylase 67-green fluorescent protein transgenic mice.
    Alonso-Espinaco V; Elezgarai I; Díez-García J; Puente N; Knöpfel T; Grandes P
    Neuroscience; 2008 Sep; 155(4):1059-69. PubMed ID: 18682278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological modulators of Kv3.1 channels adjust firing patterns of auditory brain stem neurons.
    Brown MR; El-Hassar L; Zhang Y; Alvaro G; Large CH; Kaczmarek LK
    J Neurophysiol; 2016 Jul; 116(1):106-21. PubMed ID: 27052580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purkinje-cell-restricted restoration of Kv3.3 function restores complex spikes and rescues motor coordination in Kcnc3 mutants.
    Hurlock EC; McMahon A; Joho RH
    J Neurosci; 2008 Apr; 28(18):4640-8. PubMed ID: 18448641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of conventional kinesin motors in clusters by Shaw voltage-gated K+ channels.
    Barry J; Xu M; Gu Y; Dangel AW; Jukkola P; Shrestha C; Gu C
    J Cell Sci; 2013 May; 126(Pt 9):2027-41. PubMed ID: 23487040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Modulator of Kv3 Potassium Channels Regulates the Firing of Parvalbumin-Positive Cortical Interneurons.
    Rosato-Siri MD; Zambello E; Mutinelli C; Garbati N; Benedetti R; Aldegheri L; Graziani F; Virginio C; Alvaro G; Large CH
    J Pharmacol Exp Ther; 2015 Sep; 354(3):251-60. PubMed ID: 26085652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BK and Kv3.1 potassium channels control different aspects of deep cerebellar nuclear neurons action potentials and spiking activity.
    Pedroarena CM
    Cerebellum; 2011 Dec; 10(4):647-58. PubMed ID: 21750937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.