BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 19248154)

  • 1. Effect of inorganic carbon on photoautotrophic growth of microalga Chlorococcum littorale.
    Ota M; Kato Y; Watanabe H; Watanabe M; Sato Y; Smith RL; Inomata H
    Biotechnol Prog; 2009; 25(2):492-8. PubMed ID: 19248154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate.
    Ota M; Kato Y; Watanabe H; Watanabe M; Sato Y; Smith RL; Inomata H
    Bioresour Technol; 2009 Nov; 100(21):5237-42. PubMed ID: 19559600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carotenoid production from Chlorococcum littorale in photoautotrophic cultures with downstream supercritical fluid processing.
    Ota M; Watanabe H; Kato Y; Watanabe M; Sato Y; Smith RL; Inomata H
    J Sep Sci; 2009 Jul; 32(13):2327-35. PubMed ID: 19569113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of microalgal growth model for describing specific growth rate-light response using extended information criterion.
    Kurano N; Miyachi S
    J Biosci Bioeng; 2005 Oct; 100(4):403-8. PubMed ID: 16310729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity.
    Kang CD; Lee JS; Park TH; Sim SJ
    Appl Microbiol Biotechnol; 2007 Apr; 74(5):987-94. PubMed ID: 17216459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of light intensity and temperature on photoautotrophic growth of a green microalga,
    Ota M; Takenaka M; Sato Y; Smith RL; Inomata H
    Biotechnol Rep (Amst); 2015 Sep; 7():24-29. PubMed ID: 28626711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultivation of microplantlets derived from the marine red alga Agardhiella subulata in a stirred tank photobioreactor.
    Huang YM; Rorrer GL
    Biotechnol Prog; 2003; 19(2):418-27. PubMed ID: 12675582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation of photoautotrophic fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, with inorganic carbon over narrow ranges of pH.
    Ota M; Takenaka M; Sato Y; Smith RL; Inomata H
    Biotechnol Prog; 2015; 31(4):1053-7. PubMed ID: 25919350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor.
    Kaewpintong K; Shotipruk A; Powtongsook S; Pavasant P
    Bioresour Technol; 2007 Jan; 98(2):288-95. PubMed ID: 16516464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fed-batch culture of astaxanthin-rich Haematococcus pluvialis by exponential nutrient feeding and stepwise light supplementation.
    Kang CD; Han SJ; Choi SP; Sim SJ
    Bioprocess Biosyst Eng; 2010 Jan; 33(1):133-9. PubMed ID: 19662437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chloramphenicol on photosynthesis, protein profiles and transketolase activity under extremely high CO2 concentration in an extremely-high-CO2-tolerant green microalga, Chlorococcum littorale.
    Satoh A; Kurano N; Harayama S; Miyachi S
    Plant Cell Physiol; 2004 Dec; 45(12):1857-62. PubMed ID: 15653804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis.
    Kang CD; Lee JS; Park TH; Sim SJ
    Appl Microbiol Biotechnol; 2005 Aug; 68(2):237-41. PubMed ID: 15711942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximizing algal growth in batch reactors using sequential change in light intensity.
    Wahal S; Viamajala S
    Appl Biochem Biotechnol; 2010 May; 161(1-8):511-22. PubMed ID: 20135242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase in biodegradation of dimethyl phthalate by Closterium lunula using inorganic carbon.
    Yan H; Pan G
    Chemosphere; 2004 Jun; 55(9):1281-5. PubMed ID: 15081769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the impact of salinity and irradiance on the combined carbon dioxide sequestration and carotenoids production by Dunaliella salina: A mathematical model.
    Araújo OQ; Gobbi CN; Chaloub RM; Coelho MA
    Biotechnol Bioeng; 2009 Feb; 102(2):425-35. PubMed ID: 18767189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A semi-empirical mathematical model useful for describing the relationship between carbon dioxide, pH, lactate and base in a bicarbonate-buffered cell-culture process.
    Gramer MJ; Ogorzalek T
    Biotechnol Appl Biochem; 2007 Aug; 47(Pt 4):197-204. PubMed ID: 17362203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Growth of Seliberia carboxydohydrogena carboxy bacteria with an altered composition of the gas mixture].
    Volova TG; Stasishina GN; Kasaeva GE
    Mikrobiologiia; 1983; 52(4):533-7. PubMed ID: 6417461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta.
    Hsueh HT; Li WJ; Chen HH; Chu H
    J Photochem Photobiol B; 2009 Apr; 95(1):33-9. PubMed ID: 19167907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swirling flow implementation in a photobioreactor for batch and continuous cultures of Porphyridium cruentum.
    Muller-Feuga A; Pruvost J; Le Guédes R; Le Déan L; Legentilhomme P; Legrand J
    Biotechnol Bioeng; 2003 Dec; 84(5):544-51. PubMed ID: 14574688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adventitious shoot regeneration from leaf explants of eastern cottonwood (Populus deltoides) cultured under photoautotrophic conditions.
    Mingozzi M; Montello P; Merkle S
    Tree Physiol; 2009 Mar; 29(3):333-43. PubMed ID: 19203957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.