These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 19248516)

  • 1. [Determination of amorphous iron oxides in soil by hydroxylamine extraction-spectrophotometry].
    Chi GY; Zhang ZW; Chen X; Shi Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Dec; 28(12):2931-4. PubMed ID: 19248516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utility of solid-phase spectrophotometry for determination of dissolved iron(II) and iron(III) using 2,3-dichloro-6-(3-carboxy-2-hydroxy-1-naphthylazo)quinoxaline.
    Amin AS; Gouda AA
    Talanta; 2008 Sep; 76(5):1241-5. PubMed ID: 18761184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrophotometric determination of iron in environmental and food samples using solid phase extraction.
    Kassem MA; Amin AS
    Food Chem; 2013 Dec; 141(3):1941-6. PubMed ID: 23870913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Chemical extraction of arsenic co-precipitated with amorphous Fe (OH)3 and Fe3O4].
    Chen YP; Wang SF; Jia YF
    Huan Jing Ke Xue; 2013 Jan; 34(1):308-14. PubMed ID: 23487956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: arsenic extraction by reducing agents and combination of reducing and chelating agents.
    Kim EJ; Lee JC; Baek K
    J Hazard Mater; 2015; 283():454-61. PubMed ID: 25464283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eliminating interference from iron(III) for ultraviolet absorbance measurements of dissolved organic matter.
    Doane TA; Horwáth WR
    Chemosphere; 2010 Mar; 78(11):1409-15. PubMed ID: 20092870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles.
    Chen L; Ma J; Li X; Zhang J; Fang J; Guan Y; Xie P
    Environ Sci Technol; 2011 May; 45(9):3925-30. PubMed ID: 21469678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous application of oxalic acid and dithionite for enhanced extraction of arsenic bound to amorphous and crystalline iron oxides.
    Lee ME; Jeon EK; Tsang DCW; Baek K
    J Hazard Mater; 2018 Jul; 354():91-98. PubMed ID: 29729603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on the determination of free iron oxide in soil extract by FIA-ICP-AES].
    Gong Q; Wei X; Zhang X; Yi N; Wu J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Apr; 20(2):229-31. PubMed ID: 12953495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-phase extraction, separation, and visible spectrophotometric determination of trace amounts of iron in water samples.
    Yamini Y; Amiri N
    J AOAC Int; 2001; 84(3):713-7. PubMed ID: 11417636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indirect kinetic spectrophotometric determination of hydroxylamine based on its reaction with iodate.
    Afkhami A; Madrakian T; Maleki A
    Anal Sci; 2006 Feb; 22(2):329-31. PubMed ID: 16512433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Morphology of soil iron oxides and its correlation with soil-forming process and forming conditions in a karst mountain].
    Zhang ZW; Zhu ZX; Fu WL; Wen ZL
    Huan Jing Ke Xue; 2012 Jun; 33(6):2013-20. PubMed ID: 22946190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of ammonia from an iron nitrido complex.
    Scepaniak JJ; Young JA; Bontchev RP; Smith JM
    Angew Chem Int Ed Engl; 2009; 48(17):3158-60. PubMed ID: 19322861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of iron oxides addition on organic acids content in paddy soil].
    Qu D; Sylvia S; Rolfconrad
    Ying Yong Sheng Tai Xue Bao; 2002 Nov; 13(11):1425-8. PubMed ID: 12624999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of chromium in Mentha piperita L. and soil by graphite furnace atomic absorption spectrometry after sequential extraction and microwave-assisted acid digestion to assess potential bioavailability.
    Razić S; Dogo S
    Chemosphere; 2010 Jan; 78(4):451-6. PubMed ID: 19910018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid assay for microbially reducible ferric iron in aquatic sediments.
    Lovley DR; Phillips EJ
    Appl Environ Microbiol; 1987 Jul; 53(7):1536-40. PubMed ID: 16347384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M; Hwang JS; Choi SI
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption and degradation of azimsulfuron on iron(III)-rich soil colloids.
    Pinna MV; Pusino A; Gessa C
    J Agric Food Chem; 2004 Dec; 52(26):8081-5. PubMed ID: 15612799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain).
    Fernández-Martínez R; Loredo J; Ordóñez A; Rucandio MI
    Environ Pollut; 2006 Jul; 142(2):217-26. PubMed ID: 16360254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A turn-on fluorescent probe based on hydroxylamine oxidation for detecting ferric ion selectively in living cells.
    Wang R; Yu F; Liu P; Chen L
    Chem Commun (Camb); 2012 May; 48(43):5310-2. PubMed ID: 22511221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.