BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1924853)

  • 1. Dosimetry and fluence measurements with a new irradiation arrangement for neutron capture therapy of tumours in mice.
    Pöller F; Sauerwein W; Rassow J
    Radiother Oncol; 1991 Jul; 21(3):179-82. PubMed ID: 1924853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo calculation of dose enhancement by neutron capture of 10B in fast neutron therapy.
    Pöller F; Sauerwein W; Rassow J
    Phys Med Biol; 1993 Mar; 38(3):397-410. PubMed ID: 8451283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetry of a new holding device for fast d (14) + Be-neutron irradiation of human xenografts in nude mice.
    Budach V; Olthoff-Münter K; Frank HU; Tessler H
    Int J Rad Appl Instrum A; 1988; 39(4):297-301. PubMed ID: 2838436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined use of FLUKA and MCNP-4A for the Monte Carlo simulation of the dosimetry of 10B neutron capture enhancement of fast neutron irradiations.
    Pignol JP; Cuendet P; Brassart N; Fares G; Colomb F; M'Bake Diop C; Sabattier R; Hachem A; Prevot G
    Med Phys; 1998 Jun; 25(6):885-91. PubMed ID: 9650176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of 10B to enhance the tumour dose in fast-neutron therapy.
    Waterman FM; Kuchnir FT; Skaggs LS; Bewley DK; Page BC; Attix FH
    Phys Med Biol; 1978 Jul; 23(4):592-602. PubMed ID: 100793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Neutron flow measurements in the d(14) + Be neutron radiation field from the cyclotron in Essen].
    Pöller F; Sauerwein W; Rau D; Wagner FM; Olthoff K; Rassow J; Sack H
    Strahlenther Onkol; 1990 Jun; 166(6):426-9. PubMed ID: 2363106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comet assay study of DNA damage and repair of tumour cells following boron neutron capture irradiation with fast d(14) + Be neutrons.
    Pöller F; Bauch T; Sauerwein W; Böcker W; Wittig A; Streffer C
    Int J Radiat Biol; 1996 Nov; 70(5):593-602. PubMed ID: 8947541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose enhancement in fast neutron tumour therapy due to neutron captures in 10B.
    Carlsson J; Hartman T; Grusell E
    Acta Oncol; 1994; 33(3):315-22. PubMed ID: 8018361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical dosimetry of an epithermal neutron beam for neutron capture therapy: dose distributions under reference conditions.
    Raaijmakers CP; Konijnenberg MW; Mijnheer BJ
    Int J Radiat Oncol Biol Phys; 1997 Mar; 37(4):941-51. PubMed ID: 9128973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of the response of a quiescent cell population within a murine solid tumour to boron neutron capture irradiation: studies with nicotinamide and hyperthermia.
    Masunaga S; Ono K; Suzuki M; Takagaki M; Sakurai Y; Kobayashi T; Akuta K; Akaboshi M; Kinashi Y; Abe M
    Br J Radiol; 1997 Apr; 70(832):391-8. PubMed ID: 9166076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo based protocol for cell survival and tumour control probability in BNCT.
    Ye SJ
    Phys Med Biol; 1999 Feb; 44(2):447-61. PubMed ID: 10070794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport calculations of the influence of physical factors on depth-dose distributions in boron neutron capture therapy.
    Matsumoto T
    Phys Med Biol; 1990 Jul; 35(7):971-8. PubMed ID: 2117293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boron neutron capture therapy for the treatment of cerebral gliomas. I. Theoretical evaluation of the efficacy of various neutron beams.
    Zamenhof RG; Murray BW; Brownell GL; Wellum GR; Tolpin EI
    Med Phys; 1975; 2(2):47-60. PubMed ID: 1186617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The usefulness of mild temperature hyperthermia combined with a newly developed hypoxia-oriented 10B conjugate compound, TX-2100, for boron neutron capture therapy.
    Masunaga S; Nagasawa H; Sakurai Y; Uto Y; Hori H; Nagata K; Suzuki M; Maruhashi A; Kinashi Y; Ono K
    Int J Hyperthermia; 2006 Jun; 22(4):287-99. PubMed ID: 16754350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phantom materials for boron neutron capture therapy.
    Raaijmakers CP; Nottelman EL; Mijnheer BJ
    Phys Med Biol; 2000 Aug; 45(8):2353-61. PubMed ID: 10958199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and characteristics of the HANARO neutron irradiation facility for applications in the boron neutron capture therapy field.
    Kim MS; Lee BC; Hwang SY; Kim H; Jun BJ
    Phys Med Biol; 2007 May; 52(9):2553-66. PubMed ID: 17440252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of neutron irradiation field for boron neutron capture therapy by using absorbed dose in a phantom.
    Aizawa O
    Int J Radiat Oncol Biol Phys; 1994 Mar; 28(5):1143-8. PubMed ID: 8175399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport calculations of depth-dose distributions for gadolinium neutron capture therapy.
    Matsumoto T
    Phys Med Biol; 1992 Jan; 37(1):155-62. PubMed ID: 1741420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An historical survey of radiobiology and radiotherapy with fast neutrons.
    Field SB
    Curr Top Radiat Res Q; 1976 Jan; 11(1):1-86. PubMed ID: 1106959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.