These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 19248763)

  • 1. Alamethicin in lipid bilayers: combined use of X-ray scattering and MD simulations.
    Pan J; Tieleman DP; Nagle JF; Kucerka N; Tristram-Nagle S
    Biochim Biophys Acta; 2009 Jun; 1788(6):1387-97. PubMed ID: 19248763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alamethicin aggregation in lipid membranes.
    Pan J; Tristram-Nagle S; Nagle JF
    J Membr Biol; 2009 Sep; 231(1):11-27. PubMed ID: 19789905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of N-dodecyl-N,N-dimethylamine N-oxide on the activity of sarcoplasmic reticulum Ca(2+)-transporting ATPase reconstituted into diacylphosphatidylcholine vesicles: efects of bilayer physical parameters.
    Karlovská J; Uhríková D; Kucerka N; Teixeira J; Devínsky F; Lacko I; Balgavý P
    Biophys Chem; 2006 Jan; 119(1):69-77. PubMed ID: 16223561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of cholesterol on short- and long-chain monounsaturated lipid bilayers as determined by molecular dynamics simulations and X-ray scattering.
    Kucerka N; Perlmutter JD; Pan J; Tristram-Nagle S; Katsaras J; Sachs JN
    Biophys J; 2008 Sep; 95(6):2792-805. PubMed ID: 18515383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of the peptide antibiotic alamethicin with bilayer- and non-bilayer-forming lipids: influence of increasing alamethicin concentration on the lipids supramolecular structures.
    Angelova A; Ionov R; Koch MH; Rapp G
    Arch Biochem Biophys; 2000 Jun; 378(1):93-106. PubMed ID: 10871049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial area of cholesterol in monounsaturated diacylphosphatidylcholine bilayers.
    Gallová J; Uhríková D; Kučerka N; Teixeira J; Balgavý P
    Chem Phys Lipids; 2010 Nov; 163(8):765-70. PubMed ID: 20728436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations.
    Pan J; Cheng X; Sharp M; Ho CS; Khadka N; Katsaras J
    Soft Matter; 2015 Jan; 11(1):130-8. PubMed ID: 25369786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimentally determined tilt and bending moduli of single-component lipid bilayers.
    Nagle JF
    Chem Phys Lipids; 2017 Jun; 205():18-24. PubMed ID: 28412174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the alamethicin pore reconstructed by x-ray diffraction analysis.
    Qian S; Wang W; Yang L; Huang HW
    Biophys J; 2008 May; 94(9):3512-22. PubMed ID: 18199659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alamethicin helices in a bilayer and in solution: molecular dynamics simulations.
    Tieleman DP; Sansom MS; Berendsen HJ
    Biophys J; 1999 Jan; 76(1 Pt 1):40-9. PubMed ID: 9876121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of chain length and unsaturation on elasticity of lipid bilayers.
    Rawicz W; Olbrich KC; McIntosh T; Needham D; Evans E
    Biophys J; 2000 Jul; 79(1):328-39. PubMed ID: 10866959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entropy-driven softening of fluid lipid bilayers by alamethicin.
    Pabst G; Danner S; Podgornik R; Katsaras J
    Langmuir; 2007 Nov; 23(23):11705-11. PubMed ID: 17939689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and elasticity of lipid membranes with genistein and daidzein bioflavinoids using X-ray scattering and MD simulations.
    Raghunathan M; Zubovski Y; Venable RM; Pastor RW; Nagle JF; Tristram-Nagle S
    J Phys Chem B; 2012 Apr; 116(13):3918-27. PubMed ID: 22324769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of Membrane-Disrupting Peptides I: Alamethicin Pore Stability and Spontaneous Insertion.
    Perrin BS; Pastor RW
    Biophys J; 2016 Sep; 111(6):1248-1257. PubMed ID: 27653483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of alamethicin insertion into lipid bilayers.
    He K; Ludtke SJ; Heller WT; Huang HW
    Biophys J; 1996 Nov; 71(5):2669-79. PubMed ID: 8913604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Areas of monounsaturated diacylphosphatidylcholines.
    Kucerka N; Gallová J; Uhríková D; Balgavý P; Bulacu M; Marrink SJ; Katsaras J
    Biophys J; 2009 Oct; 97(7):1926-32. PubMed ID: 19804723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering.
    Su CJ; Wu SS; Jeng US; Lee MT; Su AC; Liao KF; Lin WY; Huang YS; Chen CY
    Biochim Biophys Acta; 2013 Feb; 1828(2):528-34. PubMed ID: 23123565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alamethicin channel in a lipid bilayer: molecular dynamics simulations.
    Tieleman DP; Berendsen HJ; Sansom MS
    Biophys J; 1999 Apr; 76(4):1757-69. PubMed ID: 10096876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alamethicin pyromellitate: an ion-activated channel-forming peptide.
    Woolley GA; Epand RM; Kerr ID; Sansom MS; Wallace BA
    Biochemistry; 1994 Jun; 33(22):6850-8. PubMed ID: 7515685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the gel phase of diC22:1PC lipid bilayers determined by x-ray diffraction.
    Nagle JF; Jennings N; Qin W; Yan D; Tristram-Nagle S; Heinrich F
    Biophys J; 2023 Mar; 122(6):1033-1042. PubMed ID: 36566351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.