BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 19248816)

  • 41. Holistic Approaches in Lipid Production by Yarrowia lipolytica.
    Lazar Z; Liu N; Stephanopoulos G
    Trends Biotechnol; 2018 Nov; 36(11):1157-1170. PubMed ID: 30006239
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Co-expression of glucose-6-phosphate dehydrogenase and acyl-CoA binding protein enhances lipid accumulation in the yeast Yarrowia lipolytica.
    Yuzbasheva EY; Mostova EB; Andreeva NI; Yuzbashev TV; Laptev IA; Sobolevskaya TI; Sineoky SP
    N Biotechnol; 2017 Oct; 39(Pt A):18-21. PubMed ID: 28591644
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimization of lipid production with a genome-scale model of Yarrowia lipolytica.
    Kavšček M; Bhutada G; Madl T; Natter K
    BMC Syst Biol; 2015 Oct; 9():72. PubMed ID: 26503450
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures.
    Papanikolaou S; Chevalot I; Komaitis M; Marc I; Aggelis G
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):308-12. PubMed ID: 11935181
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Observation of the Yarrowia lipolytica peroxisome-vacuole dynamics by fluorescence microscopy with a single filter set.
    Nazarko TY; Nicaud JM; Sibirny AA
    Cell Biol Int; 2005 Jan; 29(1):65-70. PubMed ID: 15763501
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Disrupting a phospholipase A
    Li JX; Xu J; Ruan JC; Meng HM; Su H; Han XF; Lu M; Li FL; Wang SA
    J Appl Microbiol; 2021 Jan; 130(1):100-108. PubMed ID: 32648664
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Understanding and Eliminating the Detrimental Effect of Thiamine Deficiency on the Oleaginous Yeast Yarrowia lipolytica.
    Walker C; Ryu S; Giannone RJ; Garcia S; Trinh CT
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31704686
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcriptional repression by glycerol of genes involved in the assimilation of n-alkanes and fatty acids in yeast Yarrowia lipolytica.
    Mori K; Iwama R; Kobayashi S; Horiuchi H; Fukuda R; Ohta A
    FEMS Yeast Res; 2013 Mar; 13(2):233-40. PubMed ID: 23241327
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica.
    Gatter M; Ottlik S; Kövesi Z; Bauer B; Matthäus F; Barth G
    Fungal Genet Biol; 2016 Oct; 95():30-38. PubMed ID: 27486067
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Emulsifier from a tropical marine yeast, yarrowia lipolytica NCIM 3589.
    Zinjarde SS; Pant A
    J Basic Microbiol; 2002; 42(1):67-73. PubMed ID: 11925762
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica.
    Morin N; Cescut J; Beopoulos A; Lelandais G; Le Berre V; Uribelarrea JL; Molina-Jouve C; Nicaud JM
    PLoS One; 2011; 6(11):e27966. PubMed ID: 22132183
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genetic modification of the marine-derived yeast Yarrowia lipolytica with high-protein content using a GPI-anchor-fusion expression system.
    Wang F; Yue L; Wang L; Madzak C; Li J; Wang X; Chi Z
    Biotechnol Prog; 2009; 25(5):1297-303. PubMed ID: 19743190
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica.
    Yuzbashev TV; Yuzbasheva EY; Sobolevskaya TI; Laptev IA; Vybornaya TV; Larina AS; Matsui K; Fukui K; Sineoky SP
    Biotechnol Bioeng; 2010 Nov; 107(4):673-82. PubMed ID: 20632369
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression Profile of Selected Genes Involved in Storage Lipid Synthesis in a Model Oleaginous Yeast Species
    Fabiszewska A; Paplińska-Goryca M; Misiukiewicz-Stępień P; Wołoszynowska M; Nowak D; Zieniuk B
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35162970
    [No Abstract]   [Full Text] [Related]  

  • 55. Transforming sugars into fat - lipid biosynthesis using different sugars in Yarrowia lipolytica.
    Hapeta P; Rakicka M; Dulermo R; Gamboa-Meléndez H; Cruz-Le Coq AM; Nicaud JM; Lazar Z
    Yeast; 2017 Jul; 34(7):293-304. PubMed ID: 28303649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Mutagenesis, screening and characterization of mutants known as peroxisome biogenesis disorders in yeast].
    Luo YP; Li SG
    Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):470-3. PubMed ID: 16933624
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica.
    Mishra P; Lee NR; Lakshmanan M; Kim M; Kim BG; Lee DY
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):12. PubMed ID: 29560822
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional genomics for the oleaginous yeast Yarrowia lipolytica.
    Patterson K; Yu J; Landberg J; Chang I; Shavarebi F; Bilanchone V; Sandmeyer S
    Metab Eng; 2018 Jul; 48():184-196. PubMed ID: 29792930
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Abolishing storage lipids induces protein misfolding and stress responses in Yarrowia lipolytica.
    Zaghen S; Konzock O; Fu J; Kerkhoven EJ
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37742215
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surface properties of Yarrowia lipolytica and their relevance to gamma-decalactone formation from methyl ricinoleate.
    Aguedo M; Waché Y; Belin JM; Teixeira JA
    Biotechnol Lett; 2005 Mar; 27(6):417-22. PubMed ID: 15834807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.