These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19249205)

  • 21. Design, synthesis, and biochemical evaluation of phosphonate and phosphonamidate analogs of glutathionylspermidine as inhibitors of glutathionylspermidine synthetase/amidase from Escherichia coli.
    Chen S; Lin CH; Kwon DS; Walsh CT; Coward JK
    J Med Chem; 1997 Nov; 40(23):3842-50. PubMed ID: 9371250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stabilization of active-site loops in NH3-dependent NAD+ synthetase from Bacillus subtilis.
    Devedjiev Y; Symersky J; Singh R; Jedrzejas M; Brouillette C; Brouillette W; Muccio D; Chattopadhyay D; DeLucas L
    Acta Crystallogr D Biol Crystallogr; 2001 Jun; 57(Pt 6):806-12. PubMed ID: 11375500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of Novel Mycobacterium tuberculosis Pantothenate Synthetase Inhibitors: Virtual Screening, Synthesis and In Vitro Biological Activities.
    Devi PB; Jogula S; Reddy AP; Saxena S; Sridevi JP; Sriram D; Yogeeswari P
    Mol Inform; 2015 Feb; 34(2-3):147-59. PubMed ID: 27490037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pharmacophore identification and virtual screening for methionyl-tRNA synthetase inhibitors.
    Bharatham N; Bharatham K; Lee KW
    J Mol Graph Model; 2007 Mar; 25(6):813-23. PubMed ID: 16996282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Are allopurinol and metabolites found in HPRT deficient erythrocytes responsible for increased NAD synthesis?
    Micheli V; Jacomelli G; Sestini S; Notarantonio L; Cerboni B; Peruzzi L; Pompucci G
    Nucleosides Nucleotides Nucleic Acids; 2004 Oct; 23(8-9):1189-91. PubMed ID: 15571228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design, synthesis and biological evaluation of potent NAD+-dependent DNA ligase inhibitors as potential antibacterial agents. Part I: aminoalkoxypyrimidine carboxamides.
    Gu W; Wang T; Maltais F; Ledford B; Kennedy J; Wei Y; Gross CH; Parsons J; Duncan L; Arends SJ; Moody C; Perola E; Green J; Charifson PS
    Bioorg Med Chem Lett; 2012 Jun; 22(11):3693-8. PubMed ID: 22560473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets.
    Bi J; Wang H; Xie J
    J Cell Physiol; 2011 Feb; 226(2):331-40. PubMed ID: 20857400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward novel inhibitors against KdsB: a highly specific and selective broad-spectrum bacterial enzyme.
    Ahmad S; Raza S; Abro A; Liedl KR; Azam SS
    J Biomol Struct Dyn; 2019 Mar; 37(5):1326-1345. PubMed ID: 29606084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stable ammonia-specific NAD synthetase from Bacillus stearothermophilus: purification, characterization, gene cloning, and applications.
    Yamaguchi F; Koga S; Yoshioka I; Takahashi M; Sakuraba H; Ohshima T
    Biosci Biotechnol Biochem; 2002 Oct; 66(10):2052-9. PubMed ID: 12450114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Virtual screening of antibacterial compounds by similarity search of Enoyl-ACP reductase (FabI) inhibitors.
    Asse Junior LR; Kronenberger T; Magalhães Serafim MS; Sousa YV; Franco ID; Valli M; Silva Bolzani VD; Monteiro GC; Bruno Prates JL; Kroon EG; Fernandes Mota BE; Santos Ferreira DD; de Oliveira RB; Maltarollo VG
    Future Med Chem; 2020 Jan; 12(1):51-68. PubMed ID: 31729258
    [No Abstract]   [Full Text] [Related]  

  • 31. Discovery of bacterial NAD+-dependent DNA ligase inhibitors: optimization of antibacterial activity.
    Stokes SS; Huynh H; Gowravaram M; Albert R; Cavero-Tomas M; Chen B; Harang J; Loch JT; Lu M; Mullen GB; Zhao S; Liu CF; Mills SD
    Bioorg Med Chem Lett; 2011 Aug; 21(15):4556-60. PubMed ID: 21719282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thiol redox biology of trypanosomatids and potential targets for chemotherapy.
    Leroux AE; Krauth-Siegel RL
    Mol Biochem Parasitol; 2016; 206(1-2):67-74. PubMed ID: 26592324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of an Indonesian herbal constituents database and its use in Random Forest modelling in a search for inhibitors of aldose reductase.
    Naeem S; Hylands P; Barlow D
    Bioorg Med Chem; 2012 Feb; 20(3):1251-8. PubMed ID: 22261024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Small molecule inhibitors of E. coli primase, a novel bacterial target.
    Agarwal A; Louise-May S; Thanassi JA; Podos SD; Cheng J; Thoma C; Liu C; Wiles JA; Nelson DM; Phadke AS; Bradbury BJ; Deshpande MS; Pucci MJ
    Bioorg Med Chem Lett; 2007 May; 17(10):2807-10. PubMed ID: 17350255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of novel Staphylococcus aureus penicillin binding protein 2a inhibitors by multistep virtual screening and biological evaluation.
    Lv N; Kong Q; Zhang H; Li J
    Bioorg Med Chem Lett; 2021 Jun; 41():128001. PubMed ID: 33811991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simple and rapid method for determining nicotinamide adenine dinucleotide synthetase activity by high-performance liquid chromatography.
    Sakai T; Morita Y; Araki T; Masuyama Y
    J Chromatogr B Biomed Sci Appl; 1997 Dec; 704(1-2):77-81. PubMed ID: 9518180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aldehyde and phosphinate analogs of glutathione and glutathionylspermidine: potent, selective binding inhibitors of the E. coli bifunctional glutathionylspermidine synthetase/amidase.
    Lin CH; Chen S; Kwon DS; Coward JK; Walsh CT
    Chem Biol; 1997 Nov; 4(11):859-66. PubMed ID: 9384533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virtual screening and experimental verification to identify potential inhibitors of the ErmC methyltransferase responsible for bacterial resistance against macrolide antibiotics.
    Feder M; Purta E; Koscinski L; Cubrilo S; Maravic Vlahovicek G; Bujnicki JM
    ChemMedChem; 2008 Feb; 3(2):316-22. PubMed ID: 18038381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integration of virtual screening and susceptibility test to discover active-site subpocket-specific biogenic inhibitors of Helicobacter pylori shikimate dehydrogenase.
    Wang K; Zhu M; Tang Y; Liu J; Yan F; Yu Z; Zhu J
    Int Microbiol; 2019 Mar; 22(1):69-80. PubMed ID: 30810934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potent and novel 11β-HSD1 inhibitors identified from shape and docking based virtual screening.
    Xia G; Xue M; Liu L; Yu J; Liu H; Li P; Wang J; Li Y; Xiong B; Shen J
    Bioorg Med Chem Lett; 2011 Oct; 21(19):5739-44. PubMed ID: 21873057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.