These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
645 related articles for article (PubMed ID: 19249261)
1. Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Ajili SH; Ebrahimi NG; Soleimani M Acta Biomater; 2009 Jun; 5(5):1519-30. PubMed ID: 19249261 [TBL] [Abstract][Full Text] [Related]
2. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(epsilon-caprolactone) blends for tissue engineering applications in the form of hollow fibers. Chiono V; Ciardelli G; Vozzi G; Sotgiu MG; Vinci B; Domenici C; Giusti P J Biomed Mater Res A; 2008 Jun; 85(4):938-53. PubMed ID: 17896770 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable shape-memory block co-polymers for fast self-expandable stents. Xue L; Dai S; Li Z Biomaterials; 2010 Nov; 31(32):8132-40. PubMed ID: 20723973 [TBL] [Abstract][Full Text] [Related]
5. Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Ciardelli G; Chiono V; Vozzi G; Pracella M; Ahluwalia A; Barbani N; Cristallini C; Giusti P Biomacromolecules; 2005; 6(4):1961-76. PubMed ID: 16004434 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable shape-memory polymers using polycaprolactone and isosorbide based polyurethane blends. Joo YS; Cha JR; Gong MS Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():426-435. PubMed ID: 30033273 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization. Chen Z; Cheng S; Li Z; Xu K; Chen GQ J Biomater Sci Polym Ed; 2009; 20(10):1451-71. PubMed ID: 19622282 [TBL] [Abstract][Full Text] [Related]
8. Shape memory polymer foams for cerebral aneurysm reparation: effects of plasma sterilization on physical properties and cytocompatibility. De Nardo L; Alberti R; Cigada A; Yahia L; Tanzi MC; Farè S Acta Biomater; 2009 Jun; 5(5):1508-18. PubMed ID: 19136318 [TBL] [Abstract][Full Text] [Related]
9. Novel biodegradable shape memory material based on partial inclusion complex formation between alpha-cyclodextrin and poly(epsilon-caprolactone). Luo H; Liu Y; Yu Z; Zhang S; Li B Biomacromolecules; 2008 Oct; 9(10):2573-7. PubMed ID: 18798668 [TBL] [Abstract][Full Text] [Related]
10. Characterization of poly(epsilon-caprolactone)/polyfumarate blends as scaffolds for bone tissue engineering. Fernandez JM; Molinuevo MS; Cortizo AM; McCarthy AD; Cortizo MS J Biomater Sci Polym Ed; 2010; 21(10):1297-312. PubMed ID: 20534186 [TBL] [Abstract][Full Text] [Related]
11. Poly(epsilon-caprolactone) polyurethane and its shape-memory property. Ping P; Wang W; Chen X; Jing X Biomacromolecules; 2005; 6(2):587-92. PubMed ID: 15762617 [TBL] [Abstract][Full Text] [Related]
12. Improved osteogenic differentiation of human marrow stromal cells cultured on ion-induced chemically structured poly-epsilon-caprolactone. Marletta G; Ciapetti G; Satriano C; Perut F; Salerno M; Baldini N Biomaterials; 2007 Feb; 28(6):1132-40. PubMed ID: 17118444 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of phosphoryl-choline-capped poly(epsilon-caprolactone)-poly(ethylene oxide) di-block co-polymers and its surface modification on polyurethanes. Zhang T; Song Z; Chen H; Yu X; Jiang Z J Biomater Sci Polym Ed; 2008; 19(4):509-24. PubMed ID: 18318962 [TBL] [Abstract][Full Text] [Related]
14. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: solid state structure of PEO-copolymer/polyurethane blends. Tan J; Brash JL J Biomed Mater Res A; 2008 Jun; 85(4):862-72. PubMed ID: 17896775 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrial membrane potential and reactive oxygen species content of endothelial and smooth muscle cells cultured on poly(epsilon-caprolactone) films. Serrano MC; Pagani R; Manzano M; Comas JV; Portolés MT Biomaterials; 2006 Sep; 27(27):4706-14. PubMed ID: 16730794 [TBL] [Abstract][Full Text] [Related]
16. Hot melt poly-ε-caprolactone/poloxamine implantable matrices for sustained delivery of ciprofloxacin. Puga AM; Rey-Rico A; Magariños B; Alvarez-Lorenzo C; Concheiro A Acta Biomater; 2012 Apr; 8(4):1507-18. PubMed ID: 22251935 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of bio-compatibility via specific interactions in polyesters modified with a bio-resourceful macromolecular ester containing polyphenol groups. Yen KC; Mandal TK; Woo EM J Biomed Mater Res A; 2008 Sep; 86(3):701-12. PubMed ID: 18041717 [TBL] [Abstract][Full Text] [Related]
19. A hybrid electrospun PU/PCL scaffold satisfied the requirements of blood vessel prosthesis in terms of mechanical properties, pore size, and biocompatibility. Nguyen TH; Padalhin AR; Seo HS; Lee BT J Biomater Sci Polym Ed; 2013; 24(14):1692-706. PubMed ID: 23627704 [TBL] [Abstract][Full Text] [Related]
20. Synthesis, characterizations and biocompatibility of novel biodegradable star block copolymers based on poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone). Wu L; Wang L; Wang X; Xu K Acta Biomater; 2010 Mar; 6(3):1079-89. PubMed ID: 19671452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]