These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19249363)

  • 1. Phylogenetic analysis of heavy-metal ATPases in fungi and characterization of the copper-transporting ATPase of Cochliobolus heterostrophus.
    Saitoh Y; Izumitsu K; Tanaka C
    Mycol Res; 2009; 113(Pt 6-7):737-45. PubMed ID: 19249363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independent evolution of heavy metal-associated domains in copper chaperones and copper-transporting atpases.
    Jordan IK; Natale DA; Koonin EV; Galperin MY
    J Mol Evol; 2001 Dec; 53(6):622-33. PubMed ID: 11677622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Structure and function of heavy metal transporter P(1B)-ATPase in plant: a review].
    Zhang Y; Zhang Y; Sun T; Chai T
    Sheng Wu Gong Cheng Xue Bao; 2010 Jun; 26(6):715-25. PubMed ID: 20815250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity.
    Montanini B; Blaudez D; Jeandroz S; Sanders D; Chalot M
    BMC Genomics; 2007 Apr; 8():107. PubMed ID: 17448255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure and function of heavy metal transport P1B-ATPases.
    Argüello JM; Eren E; González-Guerrero M
    Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus.
    Chintalapati S; Al Kurdi R; van Scheltinga AC; Kühlbrandt W
    J Mol Biol; 2008 May; 378(3):581-95. PubMed ID: 18374940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenylyl cyclase regulates heavy metal sensitivity, bikaverin production and plant tissue colonization in Fusarium proliferatum.
    Kohut G; Oláh B; Adám AL; García-Martínez J; Hornok L
    J Basic Microbiol; 2010 Feb; 50(1):59-71. PubMed ID: 20082366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of CcCTR1, a copper uptake transporter-like gene, in Coprinopsis cinerea.
    Nakagawa Y; Kikuchi S; Sakamoto Y; Yano A
    Microbiol Res; 2010 May; 165(4):276-87. PubMed ID: 19716688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A copper-transporting ATPase BcCCC2 is necessary for pathogenicity of Botrytis cinerea.
    Saitoh Y; Izumitsu K; Morita A; Tanaka C
    Mol Genet Genomics; 2010 Jul; 284(1):33-43. PubMed ID: 20526618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation and dispersion of sequence and function in fungal TRK potassium transporters: focus on Candida albicans.
    Miranda M; Bashi E; Vylkova S; Edgerton M; Slayman C; Rivetta A
    FEMS Yeast Res; 2009 Mar; 9(2):278-92. PubMed ID: 19175416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence, properties, and applications of feruloyl esterases.
    Koseki T; Fushinobu S; Ardiansyah ; Shirakawa H; Komai M
    Appl Microbiol Biotechnol; 2009 Oct; 84(5):803-10. PubMed ID: 19644688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps.
    Møller AB; Asp T; Holm PB; Palmgren MG
    Mol Phylogenet Evol; 2008 Feb; 46(2):619-34. PubMed ID: 18155930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of a novel Cut family cDNA that encodes human copper transporter protein CutC.
    Li J; Ji C; Chen J; Yang Z; Wang Y; Fei X; Zheng M; Gu X; Wen G; Xie Y; Mao Y
    Biochem Biophys Res Commun; 2005 Nov; 337(1):179-83. PubMed ID: 16182249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of ENA ATPases HwENA1 and HwENA2 from the halophilic black yeast Hortaea werneckii.
    Gorjan A; Plemenitas A
    FEMS Microbiol Lett; 2006 Dec; 265(1):41-50. PubMed ID: 17034413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu,Zn superoxide dismutase and zinc stress in the metal-tolerant ericoid mycorrhizal fungus Oidiodendron maius Zn.
    Vallino M; Martino E; Boella F; Murat C; Chiapello M; Perotto S
    FEMS Microbiol Lett; 2009 Apr; 293(1):48-57. PubMed ID: 19278525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth at high pH and sodium and potassium tolerance in media above the cytoplasmic pH depend on ENA ATPases in Ustilago maydis.
    Benito B; Garciadeblás B; Pérez-Martín J; Rodríguez-Navarro A
    Eukaryot Cell; 2009 Jun; 8(6):821-9. PubMed ID: 19363061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manganese superoxide dismutase based phylogeny of pathogenic fungi.
    Fréalle E; Noël C; Nolard N; Symoens F; Felipe MS; Dei-Cas E; Camus D; Viscogliosi E; Delhaes L
    Mol Phylogenet Evol; 2006 Oct; 41(1):28-39. PubMed ID: 16781873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico analyses of Fsf1 sequences, a new group of fungal proteins orthologous to the metazoan sideroblastic anemia-related sideroflexin family.
    Miotto G; Tessaro S; Rotta GA; Bonatto D
    Fungal Genet Biol; 2007 Aug; 44(8):740-53. PubMed ID: 17240176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phylogenetic tree gathering the plant Zn/Cd/Pb/Co P1B-ATPases appears to be structured according to the botanical families.
    Zorrig W; Abdelly C; Berthomieu P
    C R Biol; 2011 Dec; 334(12):863-71. PubMed ID: 22123088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural model of the CopA copper ATPase of Enterococcus hirae based on chemical cross-linking.
    Lübben M; Portmann R; Kock G; Stoll R; Young MM; Solioz M
    Biometals; 2009 Apr; 22(2):363-75. PubMed ID: 18979168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.