These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
572 related articles for article (PubMed ID: 19249569)
1. Rapamycin promotes the enrichment of CD4(+)CD25(hi)FoxP3(+) T regulatory cells from naïve CD4(+) T cells of baboon that suppress antiporcine xenogenic response in vitro. Singh AK; Horvath KA; Mohiuddin MM Transplant Proc; 2009; 41(1):418-21. PubMed ID: 19249569 [TBL] [Abstract][Full Text] [Related]
2. Ex-vivo expanded baboon CD4+ CD25 Hi Treg cells suppress baboon anti-pig T and B cell immune response. Singh AK; Seavey CN; Horvath KA; Mohiuddin MM Xenotransplantation; 2012; 19(2):102-11. PubMed ID: 22497512 [TBL] [Abstract][Full Text] [Related]
3. Characterization and expansion of baboon CD4+CD25+ Treg cells for potential use in a non-human primate xenotransplantation model. Porter CM; Horvath-Arcidiacono JA; Singh AK; Horvath KA; Bloom ET; Mohiuddin MM Xenotransplantation; 2007 Jul; 14(4):298-308. PubMed ID: 17669171 [TBL] [Abstract][Full Text] [Related]
4. Rapamycin enriches for CD4(+) CD25(+) CD27(+) Foxp3(+) regulatory T cells in ex vivo-expanded CD25-enriched products from healthy donors and patients with multiple sclerosis. Keever-Taylor CA; Browning MB; Johnson BD; Truitt RL; Bredeson CN; Behn B; Tsao A Cytotherapy; 2007; 9(2):144-57. PubMed ID: 17453966 [TBL] [Abstract][Full Text] [Related]
5. CD4+Foxp3+ regulatory T cells converted by rapamycin from peripheral CD4+CD25(-) naive T cells display more potent regulatory ability in vitro. Chen JF; Gao J; Zhang D; Wang ZH; Zhu JY Chin Med J (Engl); 2010 Apr; 123(7):942-8. PubMed ID: 20497692 [TBL] [Abstract][Full Text] [Related]
6. In vitro expanded human CD4+CD25+ regulatory T cells are potent suppressors of T-cell-mediated xenogeneic responses. Wu J; Yi S; Ouyang L; Jimenez E; Simond D; Wang W; Wang Y; Hawthorne WJ; O'Connell PJ Transplantation; 2008 Jun; 85(12):1841-8. PubMed ID: 18580479 [TBL] [Abstract][Full Text] [Related]
7. The effect of immunosuppressive drug rapamycin on regulatory CD4+CD25+Foxp3+T cells in mice. Qu Y; Zhang B; Zhao L; Liu G; Ma H; Rao E; Zeng C; Zhao Y Transpl Immunol; 2007 Apr; 17(3):153-61. PubMed ID: 17331841 [TBL] [Abstract][Full Text] [Related]
8. Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. Strauss L; Whiteside TL; Knights A; Bergmann C; Knuth A; Zippelius A J Immunol; 2007 Jan; 178(1):320-9. PubMed ID: 17182569 [TBL] [Abstract][Full Text] [Related]
9. Suppressive efficacy and proliferative capacity of human regulatory T cells in allogeneic and xenogeneic responses. Lin YJ; Hara H; Tai HC; Long C; Tokita D; Yeh P; Ayares D; Morelli AE; Cooper DK Transplantation; 2008 Nov; 86(10):1452-62. PubMed ID: 19034017 [TBL] [Abstract][Full Text] [Related]
10. Functional and phenotypic characteristics of CD4+CD25highFoxp3+ Treg clones obtained from peripheral blood of patients with cancer. Strauss L; Bergmann C; Whiteside TL Int J Cancer; 2007 Dec; 121(11):2473-83. PubMed ID: 17691114 [TBL] [Abstract][Full Text] [Related]
11. Equine CD4(+) CD25(high) T cells exhibit regulatory activity by close contact and cytokine-dependent mechanisms in vitro. Hamza E; Gerber V; Steinbach F; Marti E Immunology; 2011 Nov; 134(3):292-304. PubMed ID: 21977999 [TBL] [Abstract][Full Text] [Related]
12. Foxp3 regulates human natural CD4+CD25+ regulatory T-cell-mediated suppression of xenogeneic response. Sun L; Yi S; O'Connell PJ Xenotransplantation; 2010; 17(2):121-30. PubMed ID: 20522244 [TBL] [Abstract][Full Text] [Related]
13. Differential responses of human regulatory T cells (Treg) and effector T cells to rapamycin. Strauss L; Czystowska M; Szajnik M; Mandapathil M; Whiteside TL PLoS One; 2009 Jun; 4(6):e5994. PubMed ID: 19543393 [TBL] [Abstract][Full Text] [Related]
14. Expansion of CD4(+)CD25 (+) regulatory T cells from cord blood CD4(+) cells using the common γ-chain cytokines (IL-2 and IL-15) and rapamycin. Asanuma S; Tanaka J; Sugita J; Kosugi M; Shiratori S; Wakasa K; Shono Y; Shigematsu A; Kondo T; Kobayashi T; Asaka M; Imamura M Ann Hematol; 2011 Jun; 90(6):617-24. PubMed ID: 21107839 [TBL] [Abstract][Full Text] [Related]
15. CD4 Peixoto TV; Carrasco S; Botte DAC; Catanozi S; Parra ER; Lima TM; Ugriumov N; Soriano FG; de Mello SBV; Rodrigues CM; Goldenstein-Schainberg C Adv Rheumatol; 2019 Jul; 59(1):30. PubMed ID: 31340848 [TBL] [Abstract][Full Text] [Related]
17. Blockade of TGF-β signaling to enhance the antitumor response is accompanied by dysregulation of the functional activity of CD4 Polanczyk MJ; Walker E; Haley D; Guerrouahen BS; Akporiaye ET J Transl Med; 2019 Jul; 17(1):219. PubMed ID: 31288845 [TBL] [Abstract][Full Text] [Related]