These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19249785)

  • 21. Contribution of the six major gait determinants on the vertical center of mass trajectory and the vertical ground reaction force.
    Hayot C; Sakka S; Lacouture P
    Hum Mov Sci; 2013 Apr; 32(2):279-89. PubMed ID: 23725827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Foot trajectories and loading rates in a transfemoral amputee for six different commercial prosthetic knees: An indication of adaptability.
    Abouhossein A; Awad MI; Maqbool HF; Crisp C; Stewart TD; Messenger N; Richardson RC; Dehghani-Sanij AA; Bradley D
    Med Eng Phys; 2019 Jun; 68():46-56. PubMed ID: 30979583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visual guidance of landing behaviour when stepping down to a new level.
    Buckley JG; MacLellan MJ; Tucker MW; Scally AJ; Bennett SJ
    Exp Brain Res; 2008 Jan; 184(2):223-32. PubMed ID: 17726604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation of the influence of sports surfaces on vertical ground reaction forces during landing.
    Fritz M; Peikenkamp K
    Med Biol Eng Comput; 2003 Jan; 41(1):11-7. PubMed ID: 12572742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gait ground reaction force characteristics of low back pain patients with pronated foot and able-bodied individuals with and without foot pronation.
    Farahpour N; Jafarnezhad A; Damavandi M; Bakhtiari A; Allard P
    J Biomech; 2016 Jun; 49(9):1705-1710. PubMed ID: 27086117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Increased Flexor Hallucis Longus Muscle Activity on Ground Reaction Force during Landing.
    Oku K; Kimura D; Ito T; Matsugi A; Sugioka T; Kobayashi Y; Satake H; Kumai T
    Life (Basel); 2021 Jun; 11(7):. PubMed ID: 34209702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Effects of Running Speed on Ground Reaction Forces and Lower Limb Kinematics During Single-Leg Stop Movement.
    Tominaga R; Ishii Y; Ueda T; Kurokawa T
    J Strength Cond Res; 2016 May; 30(5):1224-30. PubMed ID: 24149754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of center of pressure alteration on the ground reaction force during gait: A statistical model.
    Shaulian H; Solomonow-Avnon D; Herman A; Rozen N; Haim A; Wolf A
    Gait Posture; 2018 Oct; 66():107-113. PubMed ID: 30172216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-shoe plantar pressures and ground reaction forces during overweight adults' overground walking.
    de Castro MP; Abreu SC; Sousa H; Machado L; Santos R; Vilas-Boas JP
    Res Q Exerc Sport; 2014 Jun; 85(2):188-97. PubMed ID: 25098014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A model to predict ground reaction force for elastically-suspended backpacks.
    Leng Y; Lin X; Lu Z; Song A; Yu Z; Fu C
    Gait Posture; 2020 Oct; 82():118-125. PubMed ID: 32947177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinematic and ground reaction force accommodation during weighted walking.
    James CR; Atkins LT; Yang HS; Dufek JS; Bates BT
    Hum Mov Sci; 2015 Dec; 44():327-37. PubMed ID: 26540454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gait Alteration in Cervical Spondylotic Myelopathy Elucidated by Ground Reaction Forces.
    Haddas R; Ju KL
    Spine (Phila Pa 1976); 2019 Jan; 44(1):25-31. PubMed ID: 29889798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of gait on formation of thermal environment inside footwear.
    Shimazaki Y; Murata M
    Appl Ergon; 2015 Jul; 49():55-62. PubMed ID: 25766423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ground reaction force patterns in stroke patients with various degrees of motor recovery determined by plantar dynamic analysis.
    Chen CY; Hong PW; Chen CL; Chou SW; Wu CY; Cheng PT; Tang FT; Chen HC
    Chang Gung Med J; 2007; 30(1):62-72. PubMed ID: 17477031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toe-in Landing Increases the Ankle Inversion Angle and Moment During Single-Leg Landing: Implications in the Prevention of Lateral Ankle Sprains.
    Koshino Y; Ishida T; Yamanaka M; Samukawa M; Kobayashi T; Tohyama H
    J Sport Rehabil; 2017 Nov; 26(6):530-535. PubMed ID: 27992246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia.
    Shimokochi Y; Ambegaonkar JP; Meyer EG
    J Athl Train; 2016 Sep; 51(9):669-681. PubMed ID: 27723362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Altered Movement Biomechanics in Chronic Ankle Instability, Coper, and Control Groups: Energy Absorption and Distribution Implications.
    Kim H; Son SJ; Seeley MK; Hopkins JT
    J Athl Train; 2019 Jun; 54(6):708-717. PubMed ID: 31184955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of modified short-leg walkers on ground reaction force characteristics.
    Keefer M; King J; Powell D; Krusenklaus JH; Zhang S
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1172-7. PubMed ID: 18701198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Major factors influencing rearfoot external eversion moment during barefoot walking.
    Tsujimoto N; Nunome H; Ikegami Y
    Gait Posture; 2020 Jun; 79():189-194. PubMed ID: 32422559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Foot placement modifies kinematics and kinetics during drop jumping.
    Kovács I; Tihanyi J; Devita P; Rácz L; Barrier J; Hortobágyi T
    Med Sci Sports Exerc; 1999 May; 31(5):708-16. PubMed ID: 10331892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.