BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19249819)

  • 1. Characterization of maize germplasm for the chemical composition of the grain.
    Berardo N; Mazzinelli G; Valoti P; Laganà P; Redaelli R
    J Agric Food Chem; 2009 Mar; 57(6):2378-84. PubMed ID: 19249819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm.
    Chander S; Meng Y; Zhang Y; Yan J; Li J
    J Agric Food Chem; 2008 Aug; 56(15):6506-11. PubMed ID: 18620402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Predicting the chemical composition of intact kernels in maize hybrids by near infrared reflectance spectroscopy].
    Wei LM; Jiang HY; Li JH; Yan YL; Dai JR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Sep; 25(9):1404-7. PubMed ID: 16379276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carotenoid and anthocyanin contents of grains of Brazilian maize landraces.
    Kuhnen S; Lemos PM; Campestrini LH; Ogliari JB; Dias PF; Maraschin M
    J Sci Food Agric; 2011 Jul; 91(9):1548-53. PubMed ID: 21445873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-infrared reflectance spectroscopy (NIRS) for protein, tryptophan, and lysine evaluation in quality protein maize (QPM) breeding programs.
    Rosales A; Galicia L; Oviedo E; Islas C; Palacios-Rojas N
    J Agric Food Chem; 2011 Oct; 59(20):10781-6. PubMed ID: 21919454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hardness methods for testing maize kernels.
    Fox G; Manley M
    J Agric Food Chem; 2009 Jul; 57(13):5647-57. PubMed ID: 19496585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of analytical methods for carotenoid extraction from biofortified maize (Zea mays sp.).
    Howe JA; Tanumihardjo SA
    J Agric Food Chem; 2006 Oct; 54(21):7992-7. PubMed ID: 17032000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection of haploid maize kernels from hybrid kernels for plant breeding using near-infrared spectroscopy and SIMCA analysis.
    Jones RW; Reinot T; Frei UK; Tseng Y; Lübberstedt T; McClelland JF
    Appl Spectrosc; 2012 Apr; 66(4):447-50. PubMed ID: 22449327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared reflectance models for the rapid prediction of quality of brewing raw materials.
    Marte L; Belloni P; Genorini E; Sileoni V; Perretti G; Montanari L; Marconi O
    J Agric Food Chem; 2009 Jan; 57(2):326-33. PubMed ID: 19099457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of NIRS equations for food grain quality traits through exploitation of a core collection of cultivated sorghum.
    de Alencar Figueiredo LF; Davrieux F; Fliedel G; Rami JF; Chantereau J; Deu M; Courtois B; Mestres C
    J Agric Food Chem; 2006 Nov; 54(22):8501-9. PubMed ID: 17061827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NIR determination of major constituents in tropical root and tuber crop flours.
    Lebot V; Champagne A; Malapa R; Shiley D
    J Agric Food Chem; 2009 Nov; 57(22):10539-47. PubMed ID: 19919112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility for improving phytonutrient content in vegetable crops using conventional breeding strategies: case study with carotenoids and tocopherols in sweet corn and broccoli.
    Ibrahim KE; Juvik JA
    J Agric Food Chem; 2009 Jun; 57(11):4636-44. PubMed ID: 19489619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introgression from modern hybrid varieties into landrace populations of maize (Zea mays ssp. mays L.) in central Italy.
    Bitocchi E; Nanni L; Rossi M; Rau D; Bellucci E; Giardini A; Buonamici A; Vendramin GG; Papa R
    Mol Ecol; 2009 Feb; 18(4):603-21. PubMed ID: 19215582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy.
    Berardo N; Pisacane V; Battilani P; Scandolara A; Pietri A; Marocco A
    J Agric Food Chem; 2005 Oct; 53(21):8128-34. PubMed ID: 16218654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near infrared hyperspectral imaging for the evaluation of endosperm texture in whole yellow maize (Zea maize L.) kernels.
    Manley M; Williams P; Nilsson D; Geladi P
    J Agric Food Chem; 2009 Oct; 57(19):8761-9. PubMed ID: 19728712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliable and inexpensive colorimetric method for determining protein-bound tryptophan in maize kernels.
    Nurit E; Tiessen A; Pixley KV; Palacios-Rojas N
    J Agric Food Chem; 2009 Aug; 57(16):7233-8. PubMed ID: 19624133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of near-infrared reflectance spectroscopy (NIRS) to the evaluation of carotenoids content in maize.
    Brenna OV; Berardo N
    J Agric Food Chem; 2004 Sep; 52(18):5577-82. PubMed ID: 15373395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The xanthophyll composition of biofortified maize (Zea mays Sp.) does not influence the bioefficacy of provitamin a carotenoids in Mongolian gerbils (Meriones unguiculatus).
    Davis CR; Howe JA; Rocheford TR; Tanumihardjo SA
    J Agric Food Chem; 2008 Aug; 56(15):6745-50. PubMed ID: 18616269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of near infrared reflectance spectroscopy for the evaluation of yam (Dioscorea alata) germplasm and breeding lines.
    Lebot V; Malapa R
    J Sci Food Agric; 2013 May; 93(7):1788-97. PubMed ID: 23255261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of grain quality in diverse sorghum germplasm using a Rapid Visco-Analyzer and near infrared reflectance spectroscopy.
    Shewayrga H; Sopade PA; Jordan DR; Godwin ID
    J Sci Food Agric; 2012 May; 92(7):1402-10. PubMed ID: 22131220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.