BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 19249872)

  • 1. Peroxide-dependent formation of a covalent link between Trp51 and the heme in cytochrome c peroxidase.
    Pipirou Z; Guallar V; Basran J; Metcalfe CL; Murphy EJ; Bottrill AR; Mistry SC; Raven EL
    Biochemistry; 2009 Apr; 48(16):3593-9. PubMed ID: 19249872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of electrostatics and salt bridges in stabilizing the compound I radical in ascorbate peroxidase.
    Barrows TP; Poulos TL
    Biochemistry; 2005 Nov; 44(43):14062-8. PubMed ID: 16245922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autocatalytic formation of a covalent link between tryptophan 41 and the heme in ascorbate peroxidase.
    Pipirou Z; Bottrill AR; Metcalfe CM; Mistry SC; Badyal SK; Rawlings BJ; Raven EL
    Biochemistry; 2007 Feb; 46(8):2174-80. PubMed ID: 17263562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QM/MM studies of the electronic structure of the compound I intermediate in cytochrome c peroxidase and ascorbate peroxidase.
    Bathelt CM; Mulholland AJ; Harvey JN
    Dalton Trans; 2005 Nov; (21):3470-6. PubMed ID: 16234927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redesign of cytochrome c peroxidase into a manganese peroxidase: role of tryptophans in peroxidase activity.
    Gengenbach A; Syn S; Wang X; Lu Y
    Biochemistry; 1999 Aug; 38(35):11425-32. PubMed ID: 10471293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different pathways of radical translocation in yeast cytochrome c peroxidase and its W191F mutant on reaction with H(2)O(2) suggest an antioxidant role.
    Tsaprailis G; English AM
    J Biol Inorg Chem; 2003 Feb; 8(3):248-55. PubMed ID: 12589560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic control of the tryptophan radical in cytochrome c peroxidase.
    Barrows TP; Bhaskar B; Poulos TL
    Biochemistry; 2004 Jul; 43(27):8826-34. PubMed ID: 15236591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase.
    Taurog A; Dorris ML; Doerge DR
    Arch Biochem Biophys; 1996 Jun; 330(1):24-32. PubMed ID: 8651700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the Met-Tyr-Trp cross-link in Mycobacterium tuberculosis catalase-peroxidase (KatG) as revealed by KatG(M255I).
    Ghiladi RA; Medzihradszky KF; Ortiz de Montellano PR
    Biochemistry; 2005 Nov; 44(46):15093-105. PubMed ID: 16285713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QM/MM modeling of compound I active species in cytochrome P450, cytochrome C peroxidase, and ascorbate peroxidase.
    Harvey JN; Bathelt CM; Mulholland AJ
    J Comput Chem; 2006 Sep; 27(12):1352-62. PubMed ID: 16788912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An engineered cation site in cytochrome c peroxidase alters the reactivity of the redox active tryptophan.
    Bonagura CA; Sundaramoorthy M; Pappa HS; Patterson WR; Poulos TL
    Biochemistry; 1996 May; 35(19):6107-15. PubMed ID: 8634253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying the elusive sites of tyrosyl radicals in cytochrome c peroxidase: implications for oxidation of substrates bound at a site remote from the heme.
    Miner KD; Pfister TD; Hosseinzadeh P; Karaduman N; Donald LJ; Loewen PC; Lu Y; Ivancich A
    Biochemistry; 2014 Jun; 53(23):3781-9. PubMed ID: 24901481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scavenging with TEMPO* to identify peptide- and protein-based radicals by mass spectrometry: advantages of spin scavenging over spin trapping.
    Wright PJ; English AM
    J Am Chem Soc; 2003 Jul; 125(28):8655-65. PubMed ID: 12848573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reactivity of heme in biological systems: autocatalytic formation of both tyrosine-heme and tryptophan-heme covalent links in a single protein architecture.
    Pipirou Z; Bottrill AR; Svistunenko DA; Efimov I; Basran J; Mistry SC; Cooper CE; Raven EL
    Biochemistry; 2007 Nov; 46(46):13269-78. PubMed ID: 17958400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examining reactivity and specificity of cytochrome c peroxidase by using combinatorial mutagenesis.
    Wilming M; Iffland A; Tafelmeyer P; Arrivoli C; Saudan C; Johnsson K
    Chembiochem; 2002 Nov; 3(11):1097-104. PubMed ID: 12404635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cysteine residue near the propionate side chain of heme is the radical site in ascorbate peroxidase.
    Kitajima S; Kurioka M; Yoshimoto T; Shindo M; Kanaori K; Tajima K; Oda K
    FEBS J; 2008 Feb; 275(3):470-80. PubMed ID: 18167143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel heme and peroxide-dependent tryptophan-tyrosine cross-link in a mutant of cytochrome c peroxidase.
    Bhaskar B; Immoos CE; Shimizu H; Sulc F; Farmer PJ; Poulos TL
    J Mol Biol; 2003 Apr; 328(1):157-66. PubMed ID: 12684005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Irreversible cross-linking of heme to the distal tryptophan of stromal ascorbate peroxidase in response to rapid inactivation by H2O2.
    Kitajima S; Shimaoka T; Kurioka M; Yokota A
    FEBS J; 2007 Jun; 274(12):3013-20. PubMed ID: 17509080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulating the covalent link between distal side tryptophan, tyrosine, and methionine in catalase-peroxidases: an electronic absorption and resonance Raman study.
    Santoni E; Jakopitsch C; Obinger C; Smulevich G
    Biopolymers; 2004 May-Jun 5; 74(1-2):46-50. PubMed ID: 15137092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relocation of the distal histidine in cytochrome c peroxidase: properties of CcP(W51H), CcP(W51H/H52W), and CcP(W51H/H52L).
    Foshay MC; Vitello LB; Erman JE
    Biochemistry; 2009 Jun; 48(23):5417-25. PubMed ID: 19388664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.