These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 1925017)

  • 1. In vivo effect of the tus mutation on cell division in an Escherichia coli strain where chromosome replication is under the control of plasmid R1.
    Dasgupta S; Bernander R; Nordström K
    Res Microbiol; 1991; 142(2-3):177-80. PubMed ID: 1925017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insertion of inverted Ter sites into the terminus region of the Escherichia coli chromosome delays completion of DNA replication and disrupts the cell cycle.
    Sharma B; Hill TM
    Mol Microbiol; 1995 Oct; 18(1):45-61. PubMed ID: 8596460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of the replication-termination system affects the replication mode and causes unstable maintenance of plasmid R1.
    Krabbe M; Zabielski J; Bernander R; Nordström K
    Mol Microbiol; 1997 May; 24(4):723-35. PubMed ID: 9194700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-specific interactions in the Tus-Ter complex and the effect of base pair substitutions on arrest of DNA replication in Escherichia coli.
    Coskun-Ari FF; Hill TM
    J Biol Chem; 1997 Oct; 272(42):26448-56. PubMed ID: 9334221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Escherichia coli UvrD helicase is essential for Tus removal during recombination-dependent replication restart from Ter sites.
    Bidnenko V; Lestini R; Michel B
    Mol Microbiol; 2006 Oct; 62(2):382-96. PubMed ID: 17020578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tus-mediated arrest of DNA replication in Escherichia coli is modulated by DNA supercoiling.
    Valjavec-Gratian M; Henderson TA; Hill TM
    Mol Microbiol; 2005 Nov; 58(3):758-73. PubMed ID: 16238625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli Tus protein acts to arrest the progression of DNA replication forks in vitro.
    Hill TM; Marians KJ
    Proc Natl Acad Sci U S A; 1990 Apr; 87(7):2481-5. PubMed ID: 2181438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication arrests during a single round of replication of the Escherichia coli chromosome in the absence of DnaC activity.
    Maisnier-Patin S; Nordström K; Dasgupta S
    Mol Microbiol; 2001 Dec; 42(5):1371-82. PubMed ID: 11886566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tus gene of Escherichia coli: autoregulation, analysis of flanking sequences and identification of a complementary system in Salmonella typhimurium.
    Roecklein B; Pelletier A; Kuempel P
    Res Microbiol; 1991; 142(2-3):169-75. PubMed ID: 1925016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RecA, Tus protein and constitutive stable DNA replication in Escherichia coli rnhA mutants.
    Kogoma T; Barnard KG; Hong X
    Mol Gen Genet; 1994 Sep; 244(5):557-62. PubMed ID: 8078483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tus prevents overreplication of oriC plasmid DNA.
    Hiasa H; Marians KJ
    J Biol Chem; 1994 Oct; 269(43):26959-68. PubMed ID: 7929435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the bacterial cell cycle using strains in which chromosome replication is controlled by plasmid R1.
    Nordström K; Bernander R; Dasgupta S
    Res Microbiol; 1991; 142(2-3):181-8. PubMed ID: 1656493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new in vivo termination function for DNA polymerase I of Escherichia coli K12.
    Markovitz A
    Mol Microbiol; 2005 Mar; 55(6):1867-82. PubMed ID: 15752206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription of essential cell division genes is linked to chromosome replication in Escherichia coli.
    Liu G; Begg K; Geddes A; Donachie WD
    Mol Microbiol; 2001 May; 40(4):909-16. PubMed ID: 11401698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of RecA function affects the ability of Escherichia coli to maintain recombinant plasmids containing a Ter site.
    Hou R; Hill TM
    Plasmid; 2002 Jan; 47(1):36-50. PubMed ID: 11798284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Tus-Ter binding and lock formation: implications for DNA replication termination in Escherichia coli.
    Moreau MJ; Schaeffer PM
    Mol Biosyst; 2012 Oct; 8(10):2783-91. PubMed ID: 22859262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The progression of replication forks at natural replication barriers in live bacteria.
    Moolman MC; Tiruvadi Krishnan S; Kerssemakers JW; de Leeuw R; Lorent V; Sherratt DJ; Dekker NH
    Nucleic Acids Res; 2016 Jul; 44(13):6262-73. PubMed ID: 27166373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insertion of an R1 plasmid into the origin of replication of the E. coli chromosome: random timing of replication of the hybrid chromosome.
    Koppes L; Nordström K
    Cell; 1986 Jan; 44(1):117-24. PubMed ID: 3510077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Termination of DNA replication at Tus-ter barriers results in under-replication of template DNA.
    Jameson KH; Rudolph CJ; Hawkins M
    J Biol Chem; 2021 Dec; 297(6):101409. PubMed ID: 34780717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual suppression of mukB and seqA phenotypes might arise from their opposing influences on the Escherichia coli nucleoid structure.
    Weitao T; Nordström K; Dasgupta S
    Mol Microbiol; 1999 Oct; 34(1):157-68. PubMed ID: 10540294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.