These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 19250462)

  • 21. EBSD characterization of a hot worked 304 austenitic stainless steel under strain reversal.
    Jorge-Badiola D; Iza-Mendia A; GutiƩrrez I
    J Microsc; 2009 Jul; 235(1):36-49. PubMed ID: 19566625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EBSD and TEM investigation of the hot deformation substructure characteristics of a type 316L austenitic stainless steel.
    Cizek P; Whiteman JA; Rainforth WM; Beynon JH
    J Microsc; 2004 Mar; 213(3):285-95. PubMed ID: 15009696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The significance of phase reversion-induced nanograined/ultrafine-grained structure on the load-controlled deformation response and related mechanism in copper-bearing austenitic stainless steel.
    Hu CY; Somani MC; Misra RDK; Yang CG
    J Mech Behav Biomed Mater; 2020 Apr; 104():103666. PubMed ID: 32174424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualization of grain subdivision by analysing the misorientations within a grain using electron backscatter diffraction.
    Van Boxel S; Seefeldt M; Verlinden B; Van Houtte P
    J Microsc; 2005 May; 218(Pt 2):104-14. PubMed ID: 15857372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of intragranular misorientation parameters measured by EBSD in a hot worked austenitic stainless steel.
    Jorge-Badiola D; Iza-Mendia A; GutiƩrrez I
    J Microsc; 2007 Dec; 228(Pt 3):373-83. PubMed ID: 18045332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-grain-boundary characterization by atomic force microscopy.
    Pramanick AK; Sinha A; Sastry GV; Ghosh RN
    Ultramicroscopy; 2009 May; 109(6):741-7. PubMed ID: 19303710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemically induced annealing of stainless-steel surfaces.
    Burstein GT; Hutchings IM; Sasaki K
    Nature; 2000 Oct; 407(6806):885-7. PubMed ID: 11057662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A correlation between grain boundary character and deformation twin nucleation mechanism in coarse-grained high-Mn austenitic steel.
    Hung CY; Bai Y; Shimokawa T; Tsuji N; Murayama M
    Sci Rep; 2021 Apr; 11(1):8468. PubMed ID: 33875690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microstructure and Mechanical Properties of 4Al Alumina-Forming Austenitic Steel after Cold-Rolling Deformation and Annealing.
    Jiang C; Gao Q; Zhang H; Liu Z; Li H
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32570856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Situ Study of Precipitates' Effect on Grain Deformation Behavior and Mechanical Properties of S31254 Super Austenitic Stainless Steel.
    Ma J; Tan H; Dong N; Gao J; Wang P; Wang Z; Han P
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of boundary conditions on the evolution of lattice strains in a polycrystalline austenitic stainless steel.
    Wang YQ; Hossain S; Kabra S; Zhang SY; Smith DJ; Truman CE
    J Mater Sci; 2017; 52(13):7929-7936. PubMed ID: 32103836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of combined cathodoluminescence and EBSD analysis: a case study investigating grain boundary migration mechanisms in quartz.
    Piazolo S; Prior DJ; Holness MD
    J Microsc; 2005 Feb; 217(Pt 2):152-61. PubMed ID: 15683412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Numerical Study of Slip System Evolution in Ultra-Thin Stainless Steel Foil.
    Ren Z; Fan W; Hou J; Wang T
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31195601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of Grain Interfaces in Annealed Duplex Stainless Steel after Parallel Cross Rolling and Direct Rolling.
    Wang M; Li H; Tian Y; Guo H; Fang X; Guo Y
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29772723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Grain Size Effect on the Hot Ductility of High-Nitrogen Austenitic Stainless Steel in the Presence of Precipitates.
    Wang Z; Wang Y; Wang C
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914141
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Grain Size on the Plastic Deformation Behaviors of a Fe-18Mn-1.3Al-0.6C Austenitic Steel.
    Cui Z; He S; Tang J; Fu D; Teng J; Jiang F
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time evolution of sigma 3 annealing twins in secondary recrystallized nickel.
    Booth M; Randle V; Owen G
    J Microsc; 2005 Feb; 217(Pt 2):162-6. PubMed ID: 15683413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Site-specific atomic scale analysis of solute segregation to a coincidence site lattice grain boundary.
    Taheri ML; Sebastian JT; Reed BW; Seidman DN; Rollett AD
    Ultramicroscopy; 2010 Mar; 110(4):278-84. PubMed ID: 20097006
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement in Grain Size Distribution Uniformity for Nuclear-Grade Austenitic Stainless Steel through Thermomechanical Treatment.
    Wang Y; Xue W; Pang Z; Zhao Z; Liu Z; Liu C; Gao F; Li W
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High Temperature Tensile Fracture Behavior of Copper-Containing Austenitic Antibacterial Stainless Steel.
    Qian J; Wang H; Li J; Xu R
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.