BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19250702)

  • 21. Mast cells modulate pulmonary acute inflammation and host defense in a murine model of tuberculosis.
    Carlos D; de Souza Júnior DA; de Paula L; Jamur MC; Oliver C; Ramos SG; Silva CL; Faccioli LH
    J Infect Dis; 2007 Nov; 196(9):1361-8. PubMed ID: 17922401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pulmonary granulomatous inflammation: From sarcoidosis to tuberculosis.
    Perez RL; Rivera-Marrero CA; Roman J
    Semin Respir Infect; 2003 Mar; 18(1):23-32. PubMed ID: 12652451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs.
    Kahnert A; Höpken UE; Stein M; Bandermann S; Lipp M; Kaufmann SH
    J Infect Dis; 2007 Jan; 195(1):46-54. PubMed ID: 17152008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis.
    Rocca S; Schiavoni G; Sali M; Anfossi AG; Abalsamo L; Palucci I; Mattei F; Sanchez M; Giagu A; Antuofermo E; Fadda G; Belardelli F; Delogu G; Gabriele L
    PLoS One; 2013; 8(5):e62751. PubMed ID: 23717393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis.
    Algood HM; Lin PL; Flynn JL
    Clin Infect Dis; 2005 Aug; 41 Suppl 3():S189-93. PubMed ID: 15983898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A role for complement C5 in organism containment and granulomatous response during murine tuberculosis.
    Actor JK; Breij E; Wetsel RA; Hoffmann H; Hunter RL; Jagannath C
    Scand J Immunol; 2001 May; 53(5):464-74. PubMed ID: 11309154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The involvement of the chemokine receptor CXCR2 in neutrophil recruitment in LPS-induced inflammation and in Mycobacterium avium infection.
    Gonçalves AS; Appelberg R
    Scand J Immunol; 2002 Jun; 55(6):585-91. PubMed ID: 12028561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CD30 is required for CCL21 expression and CD4 T cell recruitment in the absence of lymphotoxin signals.
    Bekiaris V; Gaspal F; Kim MY; Withers DR; McConnell FM; Anderson G; Lane PJ
    J Immunol; 2009 Apr; 182(8):4771-5. PubMed ID: 19342654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of gamma delta T cells in immunopathology of pulmonary Mycobacterium avium infection in mice.
    Saunders BM; Frank AA; Cooper AM; Orme IM
    Infect Immun; 1998 Nov; 66(11):5508-14. PubMed ID: 9784564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A naturally occurring outbreak of Mycobacterium avium-intracellulare infections in C57BL/6N mice.
    Waggie KS; Wagner JE; Lentsch RH
    Lab Anim Sci; 1983 Jun; 33(3):249-53. PubMed ID: 6876729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ study of abundant expression of proinflammatory chemokines and cytokines in pulmonary granulomas that develop in cynomolgus macaques experimentally infected with Mycobacterium tuberculosis.
    Fuller CL; Flynn JL; Reinhart TA
    Infect Immun; 2003 Dec; 71(12):7023-34. PubMed ID: 14638792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hybrid multi-compartment model of granuloma formation and T cell priming in tuberculosis.
    Marino S; El-Kebir M; Kirschner D
    J Theor Biol; 2011 Jul; 280(1):50-62. PubMed ID: 21443879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virulence of Mycobacterium avium in mice does not correlate with resistance to nitric oxide.
    Lousada S; Flórido M; Appelberg R
    Microb Pathog; 2007; 43(5-6):243-8. PubMed ID: 17683898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Infection of B cell-deficient mice with CDC 1551, a clinical isolate of Mycobacterium tuberculosis: delay in dissemination and development of lung pathology.
    Bosio CM; Gardner D; Elkins KL
    J Immunol; 2000 Jun; 164(12):6417-25. PubMed ID: 10843697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of immune responses during infection with Mycobacterium avium strains 100, 101 and the recently sequenced 104.
    Saunders BM; Dane A; Briscoe H; Britton WJ
    Immunol Cell Biol; 2002 Dec; 80(6):544-9. PubMed ID: 12406388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactivation of latent tuberculosis infection in TNF-deficient mice.
    Botha T; Ryffel B
    J Immunol; 2003 Sep; 171(6):3110-8. PubMed ID: 12960337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Avian immune response to Mycobacterium avium strains of different virulence.
    Tuboly S
    Acta Vet Acad Sci Hung; 1979; 27(3):245-52. PubMed ID: 391011
    [No Abstract]   [Full Text] [Related]  

  • 38. Immunological basis of the development of necrotic lesions following Mycobacterium avium infection.
    Flórido M; Cooper AM; Appelberg R
    Immunology; 2002 Aug; 106(4):590-601. PubMed ID: 12153523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental murine infections with a Mycobacterium avium-intracellulare complex organism isolated from mice.
    Waggie KS; Wagner JE; Lentsch RH
    Lab Anim Sci; 1983 Jun; 33(3):254-7. PubMed ID: 6876730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Caspase-8 deficiency in T cells leads to a lethal lymphoinfiltrative immune disorder.
    Salmena L; Hakem R
    J Exp Med; 2005 Sep; 202(6):727-32. PubMed ID: 16157684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.