BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 19250734)

  • 1. Stabilization of HIPK2 by escape from proteasomal degradation mediated by the E3 ubiquitin ligase Siah1.
    Kim SY; Choi DW; Kim EA; Choi CY
    Cancer Lett; 2009 Jul; 279(2):177-84. PubMed ID: 19250734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SIAH1-HIPK2-p53ser46 Damage Response Pathway is Involved in Temozolomide-Induced Glioblastoma Cell Death.
    He Y; Roos WP; Wu Q; Hofmann TG; Kaina B
    Mol Cancer Res; 2019 May; 17(5):1129-1141. PubMed ID: 30796178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E3 ubiquitin ligase SIAH1 mediates ubiquitination and degradation of TRB3.
    Zhou Y; Li L; Liu Q; Xing G; Kuai X; Sun J; Yin X; Wang J; Zhang L; He F
    Cell Signal; 2008 May; 20(5):942-8. PubMed ID: 18276110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR.
    Winter M; Sombroek D; Dauth I; Moehlenbrink J; Scheuermann K; Crone J; Hofmann TG
    Nat Cell Biol; 2008 Jul; 10(7):812-24. PubMed ID: 18536714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response.
    Calzado MA; de la Vega L; Möller A; Bowtell DD; Schmitz ML
    Nat Cell Biol; 2009 Jan; 11(1):85-91. PubMed ID: 19043406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Sprouty2 stability by mammalian Seven-in-Absentia homolog 2.
    Nadeau RJ; Toher JL; Yang X; Kovalenko D; Friesel R
    J Cell Biochem; 2007 Jan; 100(1):151-60. PubMed ID: 16888801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia suppresses chemotherapeutic drug-induced p53 Serine 46 phosphorylation by triggering HIPK2 degradation.
    Moehlenbrink J; Bitomsky N; Hofmann TG
    Cancer Lett; 2010 Jun; 292(1):119-24. PubMed ID: 20018442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fbxw7 acts as an E3 ubiquitin ligase that targets c-Myb for nemo-like kinase (NLK)-induced degradation.
    Kanei-Ishii C; Nomura T; Takagi T; Watanabe N; Nakayama KI; Ishii S
    J Biol Chem; 2008 Nov; 283(45):30540-8. PubMed ID: 18765672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIRT1 negatively regulates the protein stability of HIPK2.
    Hwang J; Lee SY; Choi JR; Shin KS; Choi CY; Kang SJ
    Biochem Biophys Res Commun; 2013 Nov; 441(4):799-804. PubMed ID: 24211575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ubiquitination and degradation of homeodomain-interacting protein kinase 2 by WD40 repeat/SOCS box protein WSB-1.
    Choi DW; Seo YM; Kim EA; Sung KS; Ahn JW; Park SJ; Lee SR; Choi CY
    J Biol Chem; 2008 Feb; 283(8):4682-9. PubMed ID: 18093972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autoregulatory control of the p53 response by Siah-1L-mediated HIPK2 degradation.
    Calzado MA; de la Vega L; Muñoz E; Schmitz ML
    Biol Chem; 2009 Oct; 390(10):1079-83. PubMed ID: 19642869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From top to bottom: the two faces of HIPK2 for regulation of the hypoxic response.
    Calzado MA; De La Vega L; Munoz E; Schmitz ML
    Cell Cycle; 2009 Jun; 8(11):1659-64. PubMed ID: 19448429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How cells switch HIPK2 on and off.
    Sombroek D; Hofmann TG
    Cell Death Differ; 2009 Feb; 16(2):187-94. PubMed ID: 18974774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zyxin is a critical regulator of the apoptotic HIPK2-p53 signaling axis.
    Crone J; Glas C; Schultheiss K; Moehlenbrink J; Krieghoff-Henning E; Hofmann TG
    Cancer Res; 2011 Mar; 71(6):2350-9. PubMed ID: 21248071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homeodomain-interacting protein kinase 2 (HIPK2) targets beta-catenin for phosphorylation and proteasomal degradation.
    Kim EA; Kim JE; Sung KS; Choi DW; Lee BJ; Choi CY
    Biochem Biophys Res Commun; 2010 Apr; 394(4):966-71. PubMed ID: 20307497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wnt-1 signal induces phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK.
    Kanei-Ishii C; Ninomiya-Tsuji J; Tanikawa J; Nomura T; Ishitani T; Kishida S; Kokura K; Kurahashi T; Ichikawa-Iwata E; Kim Y; Matsumoto K; Ishii S
    Genes Dev; 2004 Apr; 18(7):816-29. PubMed ID: 15082531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PARP1 regulates the protein stability and proapoptotic function of HIPK2.
    Choi JR; Shin KS; Choi CY; Kang SJ
    Cell Death Dis; 2016 Oct; 7(10):e2438. PubMed ID: 27787517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. XAF1 directs apoptotic switch of p53 signaling through activation of HIPK2 and ZNF313.
    Lee MG; Han J; Jeong SI; Her NG; Lee JH; Ha TK; Kang MJ; Ryu BK; Chi SG
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15532-7. PubMed ID: 25313037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2.
    Roscic A; Möller A; Calzado MA; Renner F; Wimmer VC; Gresko E; Lüdi KS; Schmitz ML
    Mol Cell; 2006 Oct; 24(1):77-89. PubMed ID: 17018294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The E3 ubiquitin ligase thyroid hormone receptor-interacting protein 12 targets pancreas transcription factor 1a for proteasomal degradation.
    Hanoun N; Fritsch S; Gayet O; Gigoux V; Cordelier P; Dusetti N; Torrisani J; Dufresne M
    J Biol Chem; 2014 Dec; 289(51):35593-604. PubMed ID: 25355311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.