These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 19251411)
1. Improving pig manure conversion into biogas by thermal and thermo-chemical pretreatments. Carrère H; Sialve B; Bernet N Bioresour Technol; 2009 Aug; 100(15):3690-4. PubMed ID: 19251411 [TBL] [Abstract][Full Text] [Related]
2. Different pretreatments for increasing the anaerobic biodegradability in swine manure. González-Fernández C; León-Cofreces C; García-Encina PA Bioresour Technol; 2008 Dec; 99(18):8710-4. PubMed ID: 18534846 [TBL] [Abstract][Full Text] [Related]
3. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Chae KJ; Jang A; Yim SK; Kim IS Bioresour Technol; 2008 Jan; 99(1):1-6. PubMed ID: 17306978 [TBL] [Abstract][Full Text] [Related]
4. Swine manure fermentation for hydrogen production. Zhu J; Li Y; Wu X; Miller C; Chen P; Ruan R Bioresour Technol; 2009 Nov; 100(22):5472-7. PubMed ID: 19157863 [TBL] [Abstract][Full Text] [Related]
5. Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Abouelenien F; Fujiwara W; Namba Y; Kosseva M; Nishio N; Nakashimada Y Bioresour Technol; 2010 Aug; 101(16):6368-73. PubMed ID: 20378337 [TBL] [Abstract][Full Text] [Related]
6. The effects of post-treatments and temperature on recovering the methane potential of >2 mm solid fraction of digested cow manure. Kaparaju PL; Rintala JA Environ Technol; 2005 Jun; 26(6):625-31. PubMed ID: 16035655 [TBL] [Abstract][Full Text] [Related]
7. Potential of low-temperature anaerobic digestion to address current environmental concerns on swine production. Massé DI; Masse L; Xia Y; Gilbert Y J Anim Sci; 2010 Apr; 88(13 Suppl):E112-20. PubMed ID: 19855002 [TBL] [Abstract][Full Text] [Related]
8. Methane production in low-cost, unheated, plug-flow digesters treating swine manure and used cooking grease. Lansing S; Martin JF; Botero RB; da Silva TN; da Silva ED Bioresour Technol; 2010 Jun; 101(12):4362-70. PubMed ID: 20153173 [TBL] [Abstract][Full Text] [Related]
9. Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants. Angelidaki I; Boe K; Ellegaard L Water Sci Technol; 2005; 52(1-2):189-94. PubMed ID: 16180427 [TBL] [Abstract][Full Text] [Related]
10. Effect of reactor configuration on biogas production from wheat straw hydrolysate. Kaparaju P; Serrano M; Angelidaki I Bioresour Technol; 2009 Dec; 100(24):6317-23. PubMed ID: 19647428 [TBL] [Abstract][Full Text] [Related]
11. Integrated biological and electro-chemical treatment of swine manure. Chae KJ; Yim SK; Choi KH; Kim SK; Park WK Water Sci Technol; 2004; 49(5-6):427-34. PubMed ID: 15137454 [TBL] [Abstract][Full Text] [Related]
12. Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry. Bonmatí A; Flotats X; Mateu L; Campos E Water Sci Technol; 2001; 44(4):109-16. PubMed ID: 11575073 [TBL] [Abstract][Full Text] [Related]
13. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system. Cestonaro do Amaral A; Kunz A; Radis Steinmetz RL; Scussiato LA; Tápparo DC; Gaspareto TC J Environ Manage; 2016 Mar; 168():229-35. PubMed ID: 26716354 [TBL] [Abstract][Full Text] [Related]
14. Effects of high-temperature isochoric pre-treatment on the methane yields of cattle, pig and chicken manure. Raju CS; Sutaryo S; Ward AJ; Møller HB Environ Technol; 2013; 34(1-4):239-44. PubMed ID: 23530336 [TBL] [Abstract][Full Text] [Related]
15. Effect of temperature and active biogas process on passive separation of digested manure. Kaparaju P; Angelidaki I Bioresour Technol; 2008 Mar; 99(5):1345-52. PubMed ID: 17376673 [TBL] [Abstract][Full Text] [Related]
16. Biogas production with horse dung in solid-phase digestion systems. Kusch S; Oechsner H; Jungbluth T Bioresour Technol; 2008 Mar; 99(5):1280-92. PubMed ID: 17383871 [TBL] [Abstract][Full Text] [Related]
17. Wet explosion of wheat straw and codigestion with swine manure: effect on the methane productivity. Wang G; Gavala HN; Skiadas IV; Ahring BK Waste Manag; 2009 Nov; 29(11):2830-5. PubMed ID: 19666217 [TBL] [Abstract][Full Text] [Related]
18. Solids and nutrients removals from the liquid fraction of swine slurry through screening and flocculation treatment and influence of these processes on anaerobic biodegradability. González-Fernández C; Nieto-Diez PP; León-Cofreces C; García-Encina PA Bioresour Technol; 2008 Sep; 99(14):6233-9. PubMed ID: 18207388 [TBL] [Abstract][Full Text] [Related]
19. Methane production from cattle waste in laboratory reactors at 40 degrees and 60 degrees C after solid-liquid separation. Rorick MB; Spahr SL; Bryant MP J Dairy Sci; 1980 Nov; 63(11):1953-6. PubMed ID: 7440823 [TBL] [Abstract][Full Text] [Related]
20. Optimisation of biogas production from manure through serial digestion: lab-scale and pilot-scale studies. Kaparaju P; Ellegaard L; Angelidaki I Bioresour Technol; 2009 Jan; 100(2):701-9. PubMed ID: 18757195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]