These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 19251513)

  • 1. Low phase-noise sapphire crystal microwave oscillators: current status.
    Ivanov EN; Tobar ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):263-9. PubMed ID: 19251513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave interferometry: application to precision measurements and noise reduction techniques.
    Ivanov EN; Tobar ME; Woode RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1526-36. PubMed ID: 18250000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement and analysis of a microwave oscillator stabilized by a sapphire dielectric ring resonator for ultra-low noise.
    Dick GJ; Saunders J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):339-46. PubMed ID: 18285050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HBAR-based 3.6 GHz oscillator with low power consumption and low phase noise.
    Yu H; Lee CY; Pang W; Zhang H; Brannon A; Kitching J; Kim ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):400-3. PubMed ID: 19251528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A solid-mounted resonator-oscillator-based 4.596 GHz frequency synthesis.
    Boudot R; Li MD; Giordano V; Rolland N; Rolland PA; Vincent P
    Rev Sci Instrum; 2011 Mar; 82(3):034706. PubMed ID: 21456775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced noise reduction techniques for ultra-low phase noise optical-to-microwave division with femtosecond fiber combs.
    Zhang W; Xu Z; Lours M; Boudot R; Kersalé Y; Luiten AN; Le Coq Y; Santarelli G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):900-8. PubMed ID: 21622045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An X-band, high power dielectric resonator oscillator for future military systems.
    Mizan MA; Sturzebecher D; Higgins T; Paolella A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):483-7. PubMed ID: 18263210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave bulk-acoustic-wave reflection-grating resonators.
    Oates DE; Pan JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):315-22. PubMed ID: 18290157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-noise reduction in surface wave oscillators by using nonlinear sustaining amplifiers.
    Avramov ID
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):707-15. PubMed ID: 16615574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A low phase noise microwave source for atomic spin squeezing experiments in 87Rb.
    Chen Z; Bohnet JG; Weiner JM; Thompson JK
    Rev Sci Instrum; 2012 Apr; 83(4):044701. PubMed ID: 22559559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity and optimization of a high-Q sapphire dielectric motion-sensing transducer.
    Cuthbertson BD; Tobar ME; Ivanov EN; Blair DG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1303-13. PubMed ID: 18244293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-noise and broadband optical frequency comb generation based on an optoelectronic oscillator.
    Xie X; Sun T; Peng H; Zhang C; Guo P; Zhu L; Hu W; Chen Z
    Opt Lett; 2014 Feb; 39(4):785-8. PubMed ID: 24562206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators.
    Merrer PH; Saleh K; Llopis O; Berneschi S; Cosi F; Conti GN
    Appl Opt; 2012 Jul; 51(20):4742-8. PubMed ID: 22781250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Invited article: design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators.
    Locke CR; Ivanov EN; Hartnett JG; Stanwix PL; Tobar ME
    Rev Sci Instrum; 2008 May; 79(5):051301. PubMed ID: 18513054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 300 GHz wave generation based on a Kerr microresonator frequency comb stabilized to a low noise microwave reference.
    Tetsumoto T; Ayano F; Yeo M; Webber J; Nagatsuma T; Rolland A
    Opt Lett; 2020 Aug; 45(16):4377-4380. PubMed ID: 32796962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser.
    Juan YS; Lin FY
    Opt Express; 2009 Oct; 17(21):18596-605. PubMed ID: 20372590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise phase synchronization of a cryogenic microwave oscillator.
    Ivanov EN; Mouneyrac D; Le Floch JM; Tobar ME; Cros D
    Rev Sci Instrum; 2010 Jun; 81(6):064702. PubMed ID: 20590256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A digitally compensated 1.5 GHz CMOS/FBAR frequency reference.
    Rai S; Su Y; Pang W; Ruby R; Otis B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):552-61. PubMed ID: 20211770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method of power recycling in coaxial Mach-Zehnder interferometers for low noise measurements.
    Parker S; Ivanov E; Tobar M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):921-5. PubMed ID: 19473910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks.
    François B; Calosso CE; Abdel Hafiz M; Micalizio S; Boudot R
    Rev Sci Instrum; 2015 Sep; 86(9):094707. PubMed ID: 26429467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.