These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19251526)

  • 1. SPICE model for lossy piezoelectric polymers.
    Dahiya RS; Valle M; Lorenzelli L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):387-95. PubMed ID: 19251526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPICE model for lossy piezoceramic transducers.
    Puttmer A; Hauptmann P; Lucklum R; Krause O; Henning B
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):60-6. PubMed ID: 18244102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study of the acoustical properties of polymers utilized to construct PVDF ultrasonic transducers and the acousto-electric properties of PVDF and P(VDF/TrFE) films.
    Bloomfield PE; Lo WJ; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1397-405. PubMed ID: 18238685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer.
    Sammoura F; Kim SG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):990-8. PubMed ID: 22622984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of all the elastic, dielectric, and piezoelectric constants of uniaxially oriented poled PVDF films.
    Roh Y; Varadan VV; Varadan VK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jun; 49(6):836-47. PubMed ID: 12075977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic, dielectric, and piezoelectric losses in piezoceramics: how it works all together.
    Mezheritsky AV
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):695-707. PubMed ID: 15244283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A full set of langatate high-temperature acoustic wave constants: elastic, piezoelectric, dielectric constants up to 900°C.
    Davulis PM; da Cunha MP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):824-33. PubMed ID: 23549543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between piezoelectric material properties obtained by using low-voltage magnitude frequency sweeping and high-level short impulse signals.
    Petošić A; Budimir M; Pavlović N
    Ultrasonics; 2013 Aug; 53(6):1192-9. PubMed ID: 23562492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromechanical coupling constant extraction of thin-film piezoelectric materials using a bulk acoustic wave resonator.
    Naik RS; Lutsky JJ; Reif R; Sodini CG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):257-63. PubMed ID: 18244177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound transducer models for piezoelectric polymer films.
    Brown LF; Carlson DL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(3):313-8. PubMed ID: 18284984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulse echo and combined resonance techniques: a full set of LGT acoustic wave constants and temperature coefficients.
    Sturtevant BT; Davulis PM; da Cunha MP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):788-97. PubMed ID: 19406707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Definition and measurement of the normalized electrical impedance of lossy piezoelectric resonators for ultrasonic transducers.
    San Emeterio JL ; Ramos A; Sanz PT; Cegarra M
    Ultrasonics; 2000 Mar; 38(1-8):140-4. PubMed ID: 10829646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of bulk acoustic wave devices built on piezoelectric stack structures: impedance matrix analysis and network representation.
    Zhang VY; Dubus B; Lefebvre JE; Gryba T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):704-16. PubMed ID: 18407860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic imaging using air-coupled P(VDF/TrFE) transducers at 2 MHz.
    Takahashi S; Ohigashi H
    Ultrasonics; 2009 May; 49(4-5):495-8. PubMed ID: 19215951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting the Characterization of the Losses in Piezoelectric Materials from Impedance Spectroscopy at Resonance.
    González AM; García Á; Benavente-Peces C; Pardo L
    Materials (Basel); 2016 Jan; 9(2):. PubMed ID: 28787872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A circuit simulation compatible surface acoustic wave interdigital transducer macro-model.
    Munshi J; Tuli S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jul; 51(7):783-5. PubMed ID: 15300996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Equivalent Circuit of Longitudinal Vibration for a Piezoelectric Structure with Losses.
    Yuan T; Li C; Fan P
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29565825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for characterization of piezoelectric material parameters by simulated annealing optimization.
    Dong Y; Wu Z; Hu H; Wu B; Xu G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2613-5. PubMed ID: 21156357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of elastic, dielectric, and piezoelectric constants in piezoceramic disks.
    Perez N; Andrade MA; Buiochi F; Adamowski JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2772-83. PubMed ID: 21156373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of real or complex coupling coefficients for lossy piezoelectric materials.
    Piquette JC; McLaughlin EA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):821-6. PubMed ID: 19406711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.