These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 19251528)

  • 1. HBAR-based 3.6 GHz oscillator with low power consumption and low phase noise.
    Yu H; Lee CY; Pang W; Zhang H; Brannon A; Kitching J; Kim ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):400-3. PubMed ID: 19251528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A solid-mounted resonator-oscillator-based 4.596 GHz frequency synthesis.
    Boudot R; Li MD; Giordano V; Rolland N; Rolland PA; Vincent P
    Rev Sci Instrum; 2011 Mar; 82(3):034706. PubMed ID: 21456775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock.
    Daugey T; Friedt JM; Martin G; Boudot R
    Rev Sci Instrum; 2015 Nov; 86(11):114703. PubMed ID: 26628155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.
    Zuo C; Van der Spiegel J; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):82-7. PubMed ID: 20040430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extremely low phase noise UHF oscillators utilizing high-overtone, bulk-acoustic resonators.
    Driscoll MM; Jelen RA; Matthews N
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(6):774-9. PubMed ID: 18267694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low phase-noise sapphire crystal microwave oscillators: current status.
    Ivanov EN; Tobar ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):263-9. PubMed ID: 19251513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultralow-phase-noise oscillators based on BAW resonators.
    Li M; Seok S; Rolland N; Rolland P; El Aabbaoui H; de Foucauld E; Vincent P; Giordano V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):903-12. PubMed ID: 24859654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A digitally compensated 1.5 GHz CMOS/FBAR frequency reference.
    Rai S; Su Y; Pang W; Ruby R; Otis B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):552-61. PubMed ID: 20211770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1.5-GHz voltage controlled oscillator with 3% tuning bandwidth using a two-pole DSBAR filter.
    Avramov I; Gilbert SR; Ruby R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):916-23. PubMed ID: 21622047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L- and X-Band Dual-Frequency Synthesizer Utilizing Lithium Niobate RF-MEMS and Open-Loop Frequency Dividers.
    Kourani A; Yang Y; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1994-2004. PubMed ID: 33395392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-resonator dual-frequency AIN-on-Si MEMS oscillators.
    Lavasani HM; Abdolvand R; Ayazi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):802-13. PubMed ID: 25965675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase noise performance of microwave analog frequency dividers: application to the characterization of oscillators up to the millimeter-wave range.
    Llopis O; Regis M; Desgrez S; Graffeuil J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):935-40. PubMed ID: 18238498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks.
    François B; Calosso CE; Abdel Hafiz M; Micalizio S; Boudot R
    Rev Sci Instrum; 2015 Sep; 86(9):094707. PubMed ID: 26429467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New kind of injection-locked oscillator and its corresponding long-term stability control.
    Hong J; Liu A; Wang XH; Yao SX; Li ZL
    Appl Opt; 2015 Sep; 54(27):8187-91. PubMed ID: 26406523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-noise reduction in surface wave oscillators by using nonlinear sustaining amplifiers.
    Avramov ID
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):707-15. PubMed ID: 16615574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low phase noise operation of microwave oscillator circuits.
    Nallatamby JC; Prigent M; Vaury E; Laloue A; Camiade M; Obregon J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):411-20. PubMed ID: 18238558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fully integrated W-band push-push CMOS VCO with low phase noise and wide tuning range.
    Wang TP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1307-19. PubMed ID: 21768016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock.
    François B; Calosso CE; Danet JM; Boudot R
    Rev Sci Instrum; 2014 Sep; 85(9):094709. PubMed ID: 25273756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers.
    Jung K; Kim J
    Opt Lett; 2012 Jul; 37(14):2958-60. PubMed ID: 22825191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave bulk-acoustic-wave reflection-grating resonators.
    Oates DE; Pan JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):315-22. PubMed ID: 18290157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.