These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 19251690)

  • 1. Hydrolase regulates NAD+ metabolites and modulates cellular redox.
    Tong L; Lee S; Denu JM
    J Biol Chem; 2009 Apr; 284(17):11256-66. PubMed ID: 19251690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose.
    Tong L; Denu JM
    Biochim Biophys Acta; 2010 Aug; 1804(8):1617-25. PubMed ID: 20176146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of O-acetyl-ADP-ribose as a target for Nudix ADP-ribose hydrolases.
    Rafty LA; Schmidt MT; Perraud AL; Scharenberg AM; Denu JM
    J Biol Chem; 2002 Dec; 277(49):47114-22. PubMed ID: 12370179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolysis of O-acetyl-ADP-ribose isomers by ADP-ribosylhydrolase 3.
    Kasamatsu A; Nakao M; Smith BC; Comstock LR; Ono T; Kato J; Denu JM; Moss J
    J Biol Chem; 2011 Jun; 286(24):21110-7. PubMed ID: 21498885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of endogenous sirtuin metabolite O-acetyl-ADP-ribose.
    Lee S; Tong L; Denu JM
    Anal Biochem; 2008 Dec; 383(2):174-9. PubMed ID: 18812159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of NUDIX Hydrolases in NAD and ADP-Ribose Metabolism in Mammals.
    Kulikova VA; Nikiforov AA
    Biochemistry (Mosc); 2020 Aug; 85(8):883-894. PubMed ID: 33045949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nudix hydrolase controls nucleotides and glycolytic mechanisms in hypoxic Aspergillus nidulans.
    Shimizu M; Takaya N
    Biosci Biotechnol Biochem; 2013; 77(9):1888-93. PubMed ID: 24018665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases.
    Borra MT; Langer MR; Slama JT; Denu JM
    Biochemistry; 2004 Aug; 43(30):9877-87. PubMed ID: 15274642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism Dealing with Thermal Degradation of NAD
    Hachisuka SI; Sato T; Atomi H
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28652302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.
    Long A; Klimova N; Kristian T
    Neurochem Int; 2017 Oct; 109():193-201. PubMed ID: 28302504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into the mechanism of Escherichia coli YmdB: A 2'-O-acetyl-ADP-ribose deacetylase.
    Zhang W; Wang C; Song Y; Shao C; Zhang X; Zang J
    J Struct Biol; 2015 Dec; 192(3):478-486. PubMed ID: 26481419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIR2: the biochemical mechanism of NAD(+)-dependent protein deacetylation and ADP-ribosyl enzyme intermediates.
    Sauve AA; Schramm VL
    Curr Med Chem; 2004 Apr; 11(7):807-26. PubMed ID: 15078167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free ADP-ribose in human erythrocytes: pathways of intra-erythrocytic conversion and non-enzymic binding to membrane proteins.
    Zocchi E; Guida L; Franco L; Silvestro L; Guerrini M; Benatti U; De Flora A
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):121-30. PubMed ID: 8216206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Nudix Hydrolase Protein, Ysa1, Regulates Oxidative Stress Response and Antifungal Drug Susceptibility in Cryptococcus neoformans.
    Lee KT; Kwon H; Lee D; Bahn YS
    Mycobiology; 2014 Mar; 42(1):52-8. PubMed ID: 24808735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase: structure and function in bacterial NAD metabolism.
    Huang N; Sorci L; Zhang X; Brautigam CA; Li X; Raffaelli N; Magni G; Grishin NV; Osterman AL; Zhang H
    Structure; 2008 Feb; 16(2):196-209. PubMed ID: 18275811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases.
    Borra MT; O'Neill FJ; Jackson MD; Marshall B; Verdin E; Foltz KR; Denu JM
    J Biol Chem; 2002 Apr; 277(15):12632-41. PubMed ID: 11812793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases.
    Jackson MD; Schmidt MT; Oppenheimer NJ; Denu JM
    J Biol Chem; 2003 Dec; 278(51):50985-98. PubMed ID: 14522996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NUDT6 and NUDT9, two mitochondrial members of the NUDIX family, have distinct hydrolysis activities.
    Debar L; Ishak L; Moretton A; Anoosheh S; Morel F; Jenninger L; Garreau-Balandier I; Vernet P; Hofer A; van den Wildenberg S; Farge G
    Mitochondrion; 2023 Jul; 71():93-103. PubMed ID: 37343711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of ligand binding and resulting conformational changes in pyrophosphatase NUDT9.
    Gattkowski E; Rutherford TJ; Möckl F; Bauche A; Sander S; Fliegert R; Tidow H
    FEBS J; 2021 Dec; 288(23):6769-6782. PubMed ID: 34189846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.