BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 19251882)

  • 1. Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger.
    Alriksson B; Rose SH; van Zyl WH; Sjöde A; Nilvebrant NO; Jönsson LJ
    Appl Environ Microbiol; 2009 Apr; 75(8):2366-74. PubMed ID: 19251882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of cellulosic ethanol and enzyme from waste fiber sludge using SSF, recycling of hydrolytic enzymes and yeast, and recombinant cellulase-producing Aspergillus niger.
    Cavka A; Alriksson B; Rose SH; van Zyl WH; Jönsson LJ
    J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1191-200. PubMed ID: 24862324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biorefining of wood: combined production of ethanol and xylanase from waste fiber sludge.
    Cavka A; Alriksson B; Rose SH; van Zyl WH; Jönsson LJ
    J Ind Microbiol Biotechnol; 2011 Aug; 38(8):891-9. PubMed ID: 20824487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response surface optimization for enhanced production of cellulases with improved functional characteristics by newly isolated Aspergillus niger HN-2.
    Oberoi HS; Rawat R; Chadha BS
    Antonie Van Leeuwenhoek; 2014 Jan; 105(1):119-34. PubMed ID: 24158534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic changes in xylanases and β-1,4-endoglucanases secreted by Aspergillus niger An-76 in response to hydrolysates of lignocellulose polysaccharide.
    Xing S; Li G; Sun X; Ma S; Chen G; Wang L; Gao P
    Appl Biochem Biotechnol; 2013 Oct; 171(4):832-46. PubMed ID: 23900618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultivation of recombinant Aspergillus niger strains on dairy whey as a carbohydrate source.
    Crament TC; Arendsen K; Rose SH; Jansen T
    J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38299783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secretomic analysis of cheap enzymatic cocktails of
    Díaz GV; Coniglio RO; Alvarenga AE; Zapata PD; Villalba LL; Fonseca MI
    Mycologia; 2020; 112(4):663-676. PubMed ID: 32574526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous expression and characterization of mutant cellulase from indigenous strain of Aspergillus niger.
    Ahmad W; Zafar M; Anwar Z
    PLoS One; 2024; 19(5):e0298716. PubMed ID: 38748703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents.
    Alriksson B; Cavka A; Jönsson LJ
    Bioresour Technol; 2011 Jan; 102(2):1254-63. PubMed ID: 20822900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquefaction of sugarcane bagasse for enzyme production.
    Cunha FM; Kreke T; Badino AC; Farinas CS; Ximenes E; Ladisch MR
    Bioresour Technol; 2014 Nov; 172():249-252. PubMed ID: 25265329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic hydrolysis of lignocellulosic biomass using native cellulase produced by Aspergillus niger ITV02 under liquid state fermentation.
    Infanzón-Rodríguez MI; Ragazzo-Sánchez JA; Del Moral S; Calderón-Santoyo M; Aguilar-Uscanga MG
    Biotechnol Appl Biochem; 2022 Feb; 69(1):198-208. PubMed ID: 33459401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase.
    Cunha FM; Esperança MN; Zangirolami TC; Badino AC; Farinas CS
    Bioresour Technol; 2012 May; 112():270-4. PubMed ID: 22409979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulase production by Aspergillus niger in biofilm, solid-state, and submerged fermentations.
    Gamarra NN; Villena GK; Gutiérrez-Correa M
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):545-51. PubMed ID: 20354693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactic acid production from co-fermentation of food waste and spent mushroom substance with Aspergillus niger cellulase.
    Ma X; Gao M; Wang N; Liu S; Wang Q; Sun X
    Bioresour Technol; 2021 Oct; 337():125365. PubMed ID: 34102515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection of Aspergillus niger cellulases by urea during growth on glucose or glycerol supplemented media.
    Gokhale DV; Patil SG; Bastawde KB
    Appl Biochem Biotechnol; 1992 Oct; 37(1):11-7. PubMed ID: 1288413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material.
    Zwane EN; Rose SH; van Zyl WH; Rumbold K; Viljoen-Bloom M
    J Ind Microbiol Biotechnol; 2014 Jun; 41(6):1027-34. PubMed ID: 24664515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate.
    Tai WY; Tan JS; Lim V; Lee CK
    Biotechnol Prog; 2019 May; 35(3):e2781. PubMed ID: 30701709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulase production from Aspergillus niger MS82: effect of temperature and pH.
    Sohail M; Siddiqi R; Ahmad A; Khan SA
    N Biotechnol; 2009 Sep; 25(6):437-41. PubMed ID: 19552887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adding value to lignocellulosic wastes via their use for endoxylanase production by Aspergillus fungi.
    Díaz GV; Coniglio RO; Velazquez JE; Zapata PD; Villalba L; Fonseca MI
    Mycologia; 2019; 111(2):195-205. PubMed ID: 30856069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and characterisation of recombinant α-L-arabinofuranosidase for production of xylan hydrogels.
    Chimphango AF; Rose SH; van Zyl WH; Görgens JF
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):101-12. PubMed ID: 22460593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.