These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

928 related articles for article (PubMed ID: 19251996)

  • 1. Freeze tolerance, supercooling points and ice formation: comparative studies on the subzero temperature survival of limno-terrestrial tardigrades.
    Hengherr S; Worland MR; Reuner A; Brümmer F; Schill RO
    J Exp Biol; 2009 Mar; 212(Pt 6):802-7. PubMed ID: 19251996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ice crystallization and freeze tolerance in embryonic stages of the tardigrade Milnesium tardigradum.
    Hengherr S; Reuner A; Brümmer F; Schill RO
    Comp Biochem Physiol A Mol Integr Physiol; 2010 May; 156(1):151-5. PubMed ID: 20116441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-temperature tolerance in anhydrobiotic tardigrades is limited by glass transition.
    Hengherr S; Worland MR; Reuner A; Brümmer F; Schill RO
    Physiol Biochem Zool; 2009; 82(6):749-55. PubMed ID: 19732016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival of freezing by hydrated tardigrades inhabiting terrestrial and freshwater habitats.
    Guidetti R; Altiero T; Bertolani R; Grazioso P; Rebecchi L
    Zoology (Jena); 2011 Apr; 114(2):123-8. PubMed ID: 21429723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercooling ability in two populations of the land snail Helix pomatia (Gastropoda: Helicidae) and ice-nucleating activity of gut bacteria.
    Nicolai A; Vernon P; Lee M; Ansart A; Charrier M
    Cryobiology; 2005 Feb; 50(1):48-57. PubMed ID: 15710369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica.
    Elnitsky MA; Hayward SA; Rinehart JP; Denlinger DL; Lee RE
    J Exp Biol; 2008 Feb; 211(Pt 4):524-30. PubMed ID: 18245628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme freeze-tolerance in cryophilic tardigrades relies on controlled ice formation but does not involve significant change in transcription.
    Møbjerg A; Kodama M; Ramos-Madrigal J; Neves RC; Jørgensen A; Schiøtt M; Gilbert MTP; Møbjerg N
    Comp Biochem Physiol A Mol Integr Physiol; 2022 Sep; 271():111245. PubMed ID: 35640792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ice nucleation and antinucleation in nature.
    Zachariassen KE; Kristiansen E
    Cryobiology; 2000 Dec; 41(4):257-79. PubMed ID: 11222024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow dehydration promotes desiccation and freeze tolerance in the Antarctic midge Belgica antarctica.
    Hayward SA; Rinehart JP; Sandro LH; Lee RE; Denlinger DL
    J Exp Biol; 2007 Mar; 210(Pt 5):836-44. PubMed ID: 17297143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of water transport during freezing in cell suspensions using a differential scanning calorimeter.
    Devireddy RV; Raha D; Bischof JC
    Cryobiology; 1998 Mar; 36(2):124-55. PubMed ID: 9527874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors that influence freezing in the sub-Antarctic springtail Tullbergia antarctica.
    Worland MR
    J Insect Physiol; 2005 Aug; 51(8):881-94. PubMed ID: 15936029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freezing or supercooling: how does an aquatic subterranean crustacean survive exposures at subzero temperatures?
    Issartel J; Voituron Y; Odagescu V; Baudot A; Guillot G; Ruaud JP; Renault D; Vernon P; Hervant F
    J Exp Biol; 2006 Sep; 209(Pt 17):3469-75. PubMed ID: 16916982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival in extreme environments - on the current knowledge of adaptations in tardigrades.
    Møbjerg N; Halberg KA; Jørgensen A; Persson D; Bjørn M; Ramløv H; Kristensen RM
    Acta Physiol (Oxf); 2011 Jul; 202(3):409-20. PubMed ID: 21251237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells.
    Nakamura T; Takagi H; Shima J
    Cryobiology; 2009 Apr; 58(2):170-4. PubMed ID: 19126409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freezing and cryoprotective dehydration in an Antarctic nematode (Panagrolaimus davidi) visualised using a freeze substitution technique.
    Wharton DA; Downes MF; Goodall G; Marshall CJ
    Cryobiology; 2005 Feb; 50(1):21-8. PubMed ID: 15710366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze or dehydrate: only two options for the survival of subzero temperatures in the arctic enchytraeid Fridericia ratzeli.
    Pedersen PG; Holmstrup M
    J Comp Physiol B; 2003 Sep; 173(7):601-9. PubMed ID: 12898166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular freezing and survival in the freeze tolerant alpine cockroach Celatoblatta quinquemaculata.
    Worland MR; Wharton DA; Byars SG
    J Insect Physiol; 2004; 50(2-3):225-32. PubMed ID: 15019525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica.
    Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL
    J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geographic variation of freeze-tolerance in the earthworm Dendrobaena octaedra.
    Rasmussen LM; Holmstrup M
    J Comp Physiol B; 2002 Dec; 172(8):691-8. PubMed ID: 12444468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.