BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 19252307)

  • 1. Involvement of the CYP1A subfamily in stereoselective metabolism of carvedilol in beta-naphthoflavone-treated Caco-2 cells.
    Ishida K; Taguchi M; Akao T; Hashimoto Y
    Biol Pharm Bull; 2009 Mar; 32(3):513-6. PubMed ID: 19252307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereoselective metabolism of carvedilol by the beta-naphthoflavone-inducible enzyme in human intestinal epithelial Caco-2 cells.
    Ishida K; Honda M; Shimizu T; Taguchi M; Hashimoto Y
    Biol Pharm Bull; 2007 Oct; 30(10):1930-3. PubMed ID: 17917264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of substrate depletion assay to evaluation of CYP isoforms responsible for stereoselective metabolism of carvedilol.
    Iwaki M; Niwa T; Bandoh S; Itoh M; Hirose H; Kawase A; Komura H
    Drug Metab Pharmacokinet; 2016 Dec; 31(6):425-432. PubMed ID: 27836712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective oxidation and glucuronidation of carvedilol in human liver and intestinal microsomes.
    Ishida K; Taira S; Morishita H; Kayano Y; Taguchi M; Hashimoto Y
    Biol Pharm Bull; 2008 Jun; 31(6):1297-300. PubMed ID: 18520073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoselective glucuronidation of carvedilol in human liver and intestinal microsomes.
    Hanioka N; Tanaka S; Moriguchi Y; Narimatsu S
    Pharmacology; 2012; 90(3-4):117-24. PubMed ID: 22814440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative contribution of rat CYP isoforms responsible for stereoselective metabolism of carvedilol.
    Iwaki M; Niwa T; Nakamura Y; Kawase A; Komura H
    J Toxicol Sci; 2018; 43(1):59-63. PubMed ID: 29415952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The presence of inducible cytochrome P450 types 1A1 and 1A2 in the BeWo cell line.
    Avery ML; Meek CE; Audus KL
    Placenta; 2003 Jan; 24(1):45-52. PubMed ID: 12495659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(-)-carvedilol.
    Oldham HG; Clarke SE
    Drug Metab Dispos; 1997 Aug; 25(8):970-7. PubMed ID: 9280405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoselective metabolism of racemic carvedilol by UGT1A1 and UGT2B7, and effects of mutation of these enzymes on glucuronidation activity.
    Takekuma Y; Takenaka T; Yamazaki K; Ueno K; Sugawara M
    Biol Pharm Bull; 2007 Nov; 30(11):2146-53. PubMed ID: 17978490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutual inhibition between carvedilol enantiomers during racemate glucuronidation mediated by human liver and intestinal microsomes.
    Takekuma Y; Yagisawa K; Sugawara M
    Biol Pharm Bull; 2012; 35(2):151-63. PubMed ID: 22293344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of R(+)- and S(-)-carvedilol by rat liver microsomes. Evidence for stereoselective oxidation and characterization of the cytochrome P450 isozymes involved.
    Fujimaki M
    Drug Metab Dispos; 1994; 22(5):700-8. PubMed ID: 7835220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population pharmacokinetics of carvedilol enantiomers and their metabolites in healthy subjects and type-2 diabetes patients.
    Nardotto GHB; Lanchote VL; Coelho EB; Della Pasqua O
    Eur J Pharm Sci; 2017 Nov; 109S():S108-S115. PubMed ID: 28522373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereoselective glucuronidation of carvedilol by Chinese liver microsomes.
    You LY; Yu CN; Xie SG; Chen SQ; Zeng S
    J Zhejiang Univ Sci B; 2007 Oct; 8(10):756-64. PubMed ID: 17910120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of human hepatic UGT1A1, UGT2B4, and UGT2B7 in the glucuronidation of carvedilol.
    Ohno A; Saito Y; Hanioka N; Jinno H; Saeki M; Ando M; Ozawa S; Sawada J
    Drug Metab Dispos; 2004 Feb; 32(2):235-9. PubMed ID: 14744946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The alkaloid rutaecarpine is a selective inhibitor of cytochrome P450 1A in mouse and human liver microsomes.
    Ueng YF; Jan WC; Lin LC; Chen TL; Guengerich FP; Chen CF
    Drug Metab Dispos; 2002 Mar; 30(3):349-53. PubMed ID: 11854157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferential inhibition of CYP1A enzymes in hepatic microsomes by mexiletine.
    Konishi H; Morita K; Minouchi T; Yamaji A
    Eur J Drug Metab Pharmacokinet; 1999; 24(2):149-53. PubMed ID: 10510742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic and immunochemical properties of hepatic cytochrome P450 1A in three avian species treated with beta-naphthoflavone or isosafrole.
    Verbrugge LA; Giesy JP; Verbrugge DA; Woodin BR; Stegeman JJ
    Comp Biochem Physiol C Toxicol Pharmacol; 2001 Sep; 130(1):67-83. PubMed ID: 11544144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereoselective disposition of carvedilol is determined by CYP2D6.
    Zhou HH; Wood AJ
    Clin Pharmacol Ther; 1995 May; 57(5):518-24. PubMed ID: 7768074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chronic hypoxic hypoxia on oxidation and glucuronidation of carvedilol in rats.
    Yamaura S; Fukao M; Ishida K; Taguchi M; Hashimoto Y
    Eur J Drug Metab Pharmacokinet; 2014 Mar; 39(1):53-9. PubMed ID: 23739952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral analysis of carvedilol and its metabolites hydroxyphenyl carvedilol and O-desmethyl carvedilol in human plasma by liquid chromatography-tandem mass spectrometry: Application to a clinical pharmacokinetic study.
    Nardotto GHB; Coelho EB; Marques MP; Lanchote VL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Mar; 1015-1016():173-180. PubMed ID: 26927877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.