BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 19252481)

  • 1. Nicotine binding to brain receptors requires a strong cation-pi interaction.
    Xiu X; Puskar NL; Shanata JA; Lester HA; Dougherty DA
    Nature; 2009 Mar; 458(7237):534-7. PubMed ID: 19252481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary Ammonium Agonists Make Dual Cation-π Interactions in α4β2 Nicotinic Receptors.
    Post MR; Tender GS; Lester HA; Dougherty DA
    eNeuro; 2017; 4(2):. PubMed ID: 28589175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotinic pharmacophore: the pyridine N of nicotine and carbonyl of acetylcholine hydrogen bond across a subunit interface to a backbone NH.
    Blum AP; Lester HA; Dougherty DA
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13206-11. PubMed ID: 20616056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding interactions with the complementary subunit of nicotinic receptors.
    Blum AP; Van Arnam EB; German LA; Lester HA; Dougherty DA
    J Biol Chem; 2013 Mar; 288(10):6991-7. PubMed ID: 23349463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using physical chemistry to differentiate nicotinic from cholinergic agonists at the nicotinic acetylcholine receptor.
    Cashin AL; Petersson EJ; Lester HA; Dougherty DA
    J Am Chem Soc; 2005 Jan; 127(1):350-6. PubMed ID: 15631485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two neuronal nicotinic acetylcholine receptors, alpha4beta4 and alpha7, show differential agonist binding modes.
    Puskar NL; Xiu X; Lester HA; Dougherty DA
    J Biol Chem; 2011 Apr; 286(16):14618-27. PubMed ID: 21343288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing for and Quantifying Agonist Hydrogen Bonds in α6β2 Nicotinic Acetylcholine Receptors.
    Post MR; Lester HA; Dougherty DA
    Biochemistry; 2017 Apr; 56(13):1836-1840. PubMed ID: 28287260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in binding among several agonists at two stoichiometries of the neuronal, α4β2 nicotinic receptor.
    Tavares Xda S; Blum AP; Nakamura DT; Puskar NL; Shanata JA; Lester HA; Dougherty DA
    J Am Chem Soc; 2012 Jul; 134(28):11474-80. PubMed ID: 22716019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of binding mode of smoking cessation drugs to nicotinic acetylcholine receptors through study of ligand complexes with acetylcholine-binding protein.
    Rucktooa P; Haseler CA; van Elk R; Smit AB; Gallagher T; Sixma TK
    J Biol Chem; 2012 Jul; 287(28):23283-93. PubMed ID: 22553201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A triad of residues is functionally transferrable between 5-HT
    Mosesso R; Dougherty DA
    J Biol Chem; 2018 Feb; 293(8):2903-2914. PubMed ID: 29298898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the determinants of nicotine selectivity.
    Taylor P
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13195-6. PubMed ID: 20643924
    [No Abstract]   [Full Text] [Related]  

  • 12. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors.
    Wang J; Kuryatov A; Sriram A; Jin Z; Kamenecka TM; Kenny PJ; Lindstrom J
    J Biol Chem; 2015 May; 290(22):13907-18. PubMed ID: 25869137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cation-pi interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine.
    Beene DL; Brandt GS; Zhong W; Zacharias NM; Lester HA; Dougherty DA
    Biochemistry; 2002 Aug; 41(32):10262-9. PubMed ID: 12162741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors.
    Arias HR
    Neurochem Int; 2000 Jun; 36(7):595-645. PubMed ID: 10771117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic Contributions to the Binding Free Energy of Nicotine to the Acetylcholine Binding Protein.
    Li Z; Chan KC; Nickels JD; Cheng X
    J Phys Chem B; 2022 Nov; 126(43):8669-8679. PubMed ID: 36260486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering α4β2 nAChRs with reduced or increased nicotine sensitivity via selective disruption of consensus sites in the M3-M4 cytoplasmic loop of the α4 subunit.
    Biaggi-Labiosa NM; Avilés-Pagán E; Caballero-Rivera D; Báez-Pagán CA; Lasalde-Dominicci JA
    Neuropharmacology; 2015 Dec; 99():273-84. PubMed ID: 25957813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site.
    Shimomura M; Yokota M; Ihara M; Akamatsu M; Sattelle DB; Matsuda K
    Mol Pharmacol; 2006 Oct; 70(4):1255-63. PubMed ID: 16868180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling amino acid residues critical for allosteric potentiation of (α4)3(β2)2-type nicotinic acetylcholine receptor responses.
    Wang ZJ; Deba F; Mohamed TS; Chiara DC; Ramos K; Hamouda AK
    J Biol Chem; 2017 Jun; 292(24):9988-10001. PubMed ID: 28446611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced inhibition of a mutant neuronal nicotinic acetylcholine receptor by agonists: protection of function by (E)-N-methyl-4-(3-pyridinyl)-3-butene-1-amine (TC-2403).
    Papke RL
    J Pharmacol Exp Ther; 2002 May; 301(2):765-73. PubMed ID: 11961083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) mutations in the nicotinic acetylcholine receptor reveal an increase in efficacy regardless of stochiometry.
    Indurthi DC; Qudah T; Liao VW; Ahring PK; Lewis TM; Balle T; Chebib M; Absalom NL
    Pharmacol Res; 2019 Jan; 139():215-227. PubMed ID: 30472464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.