These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19252568)

  • 41. Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight.
    Churnside JH; Tatarskii VV; Wilson JJ
    Appl Opt; 1998 May; 37(15):3105-12. PubMed ID: 18273257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Considerations about the Determination of the Depolarization Calibration Profile of a Two-Telescope Lidar and Its Implications for Volume Depolarization Ratio Retrieval.
    Comerón A; Rodríguez-Gómez A; Sicard M; Barragán R; Muñoz-Porcar C; Rocadenbosch F; Granados-Muñoz MJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29867007
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced nonlinear magneto-optical rotation in cold atoms: A theoretical study.
    Ghaderi Goran Abad M; Valinezhad M; Mahmoudi M
    Sci Rep; 2019 Apr; 9(1):6312. PubMed ID: 31004116
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polarization properties of lidar scattering from clouds at 347 nm and 694 nm.
    Pal SR; Carswell AI
    Appl Opt; 1978 Aug; 17(15):2321-8. PubMed ID: 20203781
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar.
    Gimmestad G; Forrister H; Grigas T; O'Dowd C
    Sci Rep; 2017 Feb; 7():42337. PubMed ID: 28198389
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation.
    Roy G; Bissonnette LR
    Appl Opt; 2001 Sep; 40(27):4770-89. PubMed ID: 18360518
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lidar Observation of Cloud.
    Collis RT
    Science; 1965 Aug; 149(3687):978-81. PubMed ID: 17832581
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimizing cirrus optical depth retrievals over the ocean from collocated CALIPSO and AMSR-E observations.
    Tang Q; Hu Y; Li W; Huang J; Stamnes K
    Appl Opt; 2018 Sep; 57(26):7472-7481. PubMed ID: 30461813
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polar decomposition of 3 x 3 Mueller matrix: a tool for quantitative tissue polarimetry.
    Swami MK; Manhas S; Buddhiwant P; Ghosh N; Uppal A; Gupta PK
    Opt Express; 2006 Oct; 14(20):9324-37. PubMed ID: 19529316
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Few-mode frequency-modulated LiDAR receivers.
    Fardoost A; Ghaedi Vanani F; Wen H; Li G
    Opt Lett; 2020 Jun; 45(11):3127-3130. PubMed ID: 32479476
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain.
    Hayman M; Spuler S; Morley B
    Opt Express; 2014 Jul; 22(14):16976-90. PubMed ID: 25090513
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bistatic receiver model for airborne lidar returns incident on an imaging array from underwater objects.
    Cadalli N; Munson DC; Singer AC
    Appl Opt; 2002 Jun; 41(18):3638-49. PubMed ID: 12078691
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings.
    Yang F; Fang Z; Pan Z; Ye Q; Cai H; Qu R
    Opt Express; 2012 Dec; 20(27):28839-45. PubMed ID: 23263124
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polarization-coded material classification in automotive LIDAR aiming at safer autonomous driving implementations.
    Nunes-Pereira EJ; Peixoto H; Teixeira J; Santos J
    Appl Opt; 2020 Mar; 59(8):2530-2540. PubMed ID: 32225789
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of stratospheric sulfuric Acid aerosols with polarization lidar: theory, simulations, and observations.
    Beyerle G
    Appl Opt; 2000 Sep; 39(27):4994-5000. PubMed ID: 18350097
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spontaneous polarization induced by natural thermalization of incoherent light.
    Picozzi A
    Opt Express; 2008 Oct; 16(22):17171-85. PubMed ID: 18957998
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiple scattering in atmospheric clouds: lidar observations.
    Pal SR; Carswell AI
    Appl Opt; 1976 Aug; 15(8):1990-5. PubMed ID: 20165312
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of the performance of a polarized LiDAR imager in fog.
    Ballesta-Garcia M; Peña-Gutiérrez S; Rodríguez-Aramendía A; García-Gómez P; Rodrigo N; Bobi AR; Royo S
    Opt Express; 2022 Nov; 30(23):41524-41540. PubMed ID: 36366628
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of transparent wood on the polarization degree of light.
    Vasileva E; Baitenov A; Chen H; Li Y; Sychugov I; Yan M; Berglund L; Popov S
    Opt Lett; 2019 Jun; 44(12):2962-2965. PubMed ID: 31199356
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Depolarization of polarized light caused by high altitude clouds. 1: Depolarization of lidar induced by cirrus.
    Sun YY; Li ZP; Bösenberg J
    Appl Opt; 1989 Sep; 28(17):3625-32. PubMed ID: 20555746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.