BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 19252679)

  • 1. Glucose influence on copper ion-dependent oxidation of low density lipoprotein.
    Ghaffari MA; Mojab S
    Iran Biomed J; 2009 Jan; 13(1):59-64. PubMed ID: 19252679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycation accelerates the oxidation of low density lipoprotein by copper ions.
    Kobayashi K; Watanabe J; Umeda F; Nawata H
    Endocr J; 1995 Aug; 42(4):461-5. PubMed ID: 8556051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why is glycated LDL more sensitive to oxidation than native LDL? A comparative study.
    Sobal G; Menzel J; Sinzinger H
    Prostaglandins Leukot Essent Fatty Acids; 2000 Oct; 63(4):177-86. PubMed ID: 11049692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of glucose and alpha-tocopherol on low-density lipoprotein oxidation and glycation.
    Chang CJ; Hsieh RH; Wang HF; Chin MY; Huang SY
    Ann N Y Acad Sci; 2005 May; 1042():294-302. PubMed ID: 15965075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of oxidized glycated low-density lipoprotein in cultured bovine aortic endothelial cells.
    Kobayashi K; Watanabe J; Umeda F; Masakado M; Ono Y; Taniguchi S; Yanase T; Hashimoto T; Sako Y; Nawata H
    Horm Metab Res; 1995 Aug; 27(8):356-62. PubMed ID: 7590623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Vitamin E on susceptibility of low-density lipoprotein and low-density lipoprotein subfractions to oxidation and on protein glycation in NIDDM.
    Reaven PD; Herold DA; Barnett J; Edelman S
    Diabetes Care; 1995 Jun; 18(6):807-16. PubMed ID: 7555507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melatonin inhibits oxidative modification of human low-density lipoprotein.
    Kelly MR; Loo G
    J Pineal Res; 1997 May; 22(4):203-9. PubMed ID: 9247205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo and in vitro evidence for the glycoxidation of low density lipoprotein in human atherosclerotic plaques.
    Imanaga Y; Sakata N; Takebayashi S; Matsunaga A; Sasaki J; Arakawa K; Nagai R; Horiuchi S; Itabe H; Takano T
    Atherosclerosis; 2000 Jun; 150(2):343-55. PubMed ID: 10856526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of superoxide to reduced antioxidant activity of glycoxidative serum albumin.
    Sakata N; Moh A; Takebayashi S
    Heart Vessels; 2002 Nov; 17(1):22-9. PubMed ID: 12434198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do E-series prostaglandins and their metabolites influence oxidation of native and glycated low-density lipoproteins?
    Sobal G; Menzel JE; Sinzinger H
    Prostaglandins Other Lipid Mediat; 1998 Jan; 55(1):67-76. PubMed ID: 9661219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of alpha-tocopherol on LDL oxidation and glycation: in vitro and in vivo studies.
    Li D; Devaraj S; Fuller C; Bucala R; Jialal I
    J Lipid Res; 1996 Sep; 37(9):1978-86. PubMed ID: 8895064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low density lipoprotein for oxidation and metabolic studies. Isolation from small volumes of plasma using a tabletop ultracentrifuge.
    Himber J; Bühler E; Moll D; Moser UK
    Int J Vitam Nutr Res; 1995; 65(2):137-42. PubMed ID: 7591534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of human LDL by in vitro incubation with cigarette smoke or copper ions: implications for allergies, asthma and atherosclerosis.
    Vruwink KG; Gershwin ME; Sachet P; Halpern G; Davis PA
    J Investig Allergol Clin Immunol; 1996; 6(5):294-300. PubMed ID: 8959540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose enhancement of LDL oxidation is strictly metal ion dependent.
    Mowri HO; Frei B; Keaney JF
    Free Radic Biol Med; 2000 Nov; 29(9):814-24. PubMed ID: 11063907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrahydrobiopterin inhibits copper-induced oxidation of low density lipoprotein.
    Sakuma S; Fujimoto Y; Gohda Y; Fujita T
    Res Commun Mol Pathol Pharmacol; 2000; 107(5-6):397-406. PubMed ID: 11589366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of acetylsalicylic acid on oxidation of native and glycated low-density lipoprotein.
    Sobal G; Menzel JE; Sinzinger H
    Life Sci; 2000 Apr; 66(20):1987-98. PubMed ID: 10821123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HDL oxidability and its protective effect against LDL oxidation in Type 2 diabetic patients.
    Sanguinetti SM; Brites FD; Fasulo V; Verona J; Elbert A; Wikinski RL; Schreier LE
    Diabetes Nutr Metab; 2001 Feb; 14(1):27-36. PubMed ID: 11345163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway.
    Kawamura M; Heinecke JW; Chait A
    J Clin Invest; 1994 Aug; 94(2):771-8. PubMed ID: 8040332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycation and glycoxidation of low-density lipoproteins by glucose and low-molecular mass aldehydes. Formation of modified and oxidized particles.
    Knott HM; Brown BE; Davies MJ; Dean RT
    Eur J Biochem; 2003 Sep; 270(17):3572-82. PubMed ID: 12919321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of high-density lipoprotein subfractions inhibiting copper-catalyzed oxidation of low-density lipoprotein.
    Huang JM; Huang ZX; Zhu W
    Clin Biochem; 1998 Oct; 31(7):537-43. PubMed ID: 9812173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.