BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19252956)

  • 1. Control of myocyte remodeling in vitro with engineered substrates.
    Geisse NA; Sheehy SP; Parker KK
    In Vitro Cell Dev Biol Anim; 2009; 45(7):343-50. PubMed ID: 19252956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sarcomere alignment is regulated by myocyte shape.
    Bray MA; Sheehy SP; Parker KK
    Cell Motil Cytoskeleton; 2008 Aug; 65(8):641-51. PubMed ID: 18561184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial architecture in cardiac myocytes depends on cell shape and matrix rigidity.
    Lyra-Leite DM; Petersen AP; Ariyasinghe NR; Cho N; McCain ML
    J Mol Cell Cardiol; 2021 Jan; 150():32-43. PubMed ID: 33038389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myofibrillar architecture in engineered cardiac myocytes.
    Parker KK; Tan J; Chen CS; Tung L
    Circ Res; 2008 Aug; 103(4):340-2. PubMed ID: 18635822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility.
    McCain ML; Yuan H; Pasqualini FS; Campbell PH; Parker KK
    Am J Physiol Heart Circ Physiol; 2014 Jun; 306(11):H1525-39. PubMed ID: 24682394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organization of muscle cell structure and function.
    Grosberg A; Kuo PL; Guo CL; Geisse NA; Bray MA; Adams WJ; Sheehy SP; Parker KK
    PLoS Comput Biol; 2011 Feb; 7(2):e1001088. PubMed ID: 21390276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercellular and extracellular mechanotransduction in cardiac myocytes.
    Kresh JY; Chopra A
    Pflugers Arch; 2011 Jul; 462(1):75-87. PubMed ID: 21437600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear morphology and deformation in engineered cardiac myocytes and tissues.
    Bray MA; Adams WJ; Geisse NA; Feinberg AW; Sheehy SP; Parker KK
    Biomaterials; 2010 Jul; 31(19):5143-50. PubMed ID: 20382423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.
    Lyra-Leite DM; Andres AM; Petersen AP; Ariyasinghe NR; Cho N; Lee JA; Gottlieb RA; McCain ML
    Am J Physiol Heart Circ Physiol; 2017 Oct; 313(4):H757-H767. PubMed ID: 28733449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.
    Lee H; Adams WJ; Alford PW; McCain ML; Feinberg AW; Sheehy SP; Goss JA; Parker KK
    Exp Biol Med (Maywood); 2015 Nov; 240(11):1543-54. PubMed ID: 25908635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function.
    McCain ML; Parker KK
    Pflugers Arch; 2011 Jul; 462(1):89-104. PubMed ID: 21499986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical architecture influences calcium dynamics in engineered cardiac muscle.
    Pong T; Adams WJ; Bray MA; Feinberg AW; Sheehy SP; Werdich AA; Parker KK
    Exp Biol Med (Maywood); 2011 Mar; 236(3):366-73. PubMed ID: 21330361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing.
    Chopra A; Tabdanov E; Patel H; Janmey PA; Kresh JY
    Am J Physiol Heart Circ Physiol; 2011 Apr; 300(4):H1252-66. PubMed ID: 21257918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes.
    Sheehy SP; Grosberg A; Qin P; Behm DJ; Ferrier JP; Eagleson MA; Nesmith AP; Krull D; Falls JG; Campbell PH; McCain ML; Willette RN; Hu E; Parker KK
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1643-1656. PubMed ID: 28343439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of the transmembrane proteoglycan syndecan-4 and its regulatory kinases in costameres of rat cardiomyocytes: a deconvolution microscopic study.
    VanWinkle WB; Snuggs MB; De Hostos EL; Buja LM; Woods A; Couchman JR
    Anat Rec; 2002 Sep; 268(1):38-46. PubMed ID: 12209563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers.
    Gopalan SM; Flaim C; Bhatia SN; Hoshijima M; Knoell R; Chien KR; Omens JH; McCulloch AD
    Biotechnol Bioeng; 2003 Mar; 81(5):578-87. PubMed ID: 12514807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microdomain heterogeneity in 3D affects the mechanics of neonatal cardiac myocyte contraction.
    Curtis MW; Budyn E; Desai TA; Samarel AM; Russell B
    Biomech Model Mechanobiol; 2013 Jan; 12(1):95-109. PubMed ID: 22407215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downregulation of cytoskeletal muscle LIM protein by nitric oxide: impact on cardiac myocyte hypertrophy.
    Heineke J; Kempf T; Kraft T; Hilfiker A; Morawietz H; Scheubel RJ; Caroni P; Lohmann SM; Drexler H; Wollert KC
    Circulation; 2003 Mar; 107(10):1424-32. PubMed ID: 12642365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac myocytes' dynamic contractile behavior differs depending on heart segment.
    De Souza EJ; Ahmed W; Chan V; Bashir R; Saif T
    Biotechnol Bioeng; 2013 Feb; 110(2):628-36. PubMed ID: 22952006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transduction of cell and matrix geometric cues by the actin cytoskeleton.
    Tran VD; Kumar S
    Curr Opin Cell Biol; 2021 Feb; 68():64-71. PubMed ID: 33075689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.