BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

707 related articles for article (PubMed ID: 19253097)

  • 21. Influence of hand cycling on physical capacity in the rehabilitation of persons with a spinal cord injury: a longitudinal cohort study.
    Valent LJ; Dallmeijer AJ; Houdijk H; Slootman HJ; Post MW; van der Woude LH
    Arch Phys Med Rehabil; 2008 Jun; 89(6):1016-22. PubMed ID: 18503794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Med Sci Sports Exerc; 1994 Nov; 26(11):1373-81. PubMed ID: 7837958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of training on biomechanics of wheelchair propulsion.
    Rodgers MM; Keyser RE; Rasch EK; Gorman PH; Russell PJ
    J Rehabil Res Dev; 2001; 38(5):505-11. PubMed ID: 11732828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wheelchair axle position effect on start-up propulsion performance of persons with tetraplegia.
    Freixes O; Fernández SA; Gatti MA; Crespo MJ; Olmos LE; Rubel IF
    J Rehabil Res Dev; 2010; 47(7):661-8. PubMed ID: 21110262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upper-limb joint power and its distribution in spinal cord injured wheelchair users: steady-state self-selected speed versus maximal acceleration trials.
    Price R; Ashwell ZR; Chang MW; Boninger ML; Koontz AM; Sisto SA
    Arch Phys Med Rehabil; 2007 Apr; 88(4):456-63. PubMed ID: 17398246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of handrim diameter on manual wheelchair propulsion: mechanical energy and power flow analysis.
    Guo LY; Su FC; An KN
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):107-15. PubMed ID: 16226359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A motor learning approach to training wheelchair propulsion biomechanics for new manual wheelchair users: A pilot study.
    Morgan KA; Tucker SM; Klaesner JW; Engsberg JR
    J Spinal Cord Med; 2017 May; 40(3):304-315. PubMed ID: 26674751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Is effective force application in handrim wheelchair propulsion also efficient?
    Bregman DJ; van Drongelen S; Veeger HE
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):13-9. PubMed ID: 18990473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Promoting Physical Activity Through a Manual Wheelchair Propulsion Intervention in Persons With Multiple Sclerosis.
    Rice IM; Rice LA; Motl RW
    Arch Phys Med Rehabil; 2015 Oct; 96(10):1850-8. PubMed ID: 26150167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The longitudinal relation between physical capacity and wheelchair skill performance during inpatient rehabilitation of people with spinal cord injury.
    Kilkens OJ; Dallmeijer AJ; Nene AV; Post MW; van der Woude LH
    Arch Phys Med Rehabil; 2005 Aug; 86(8):1575-81. PubMed ID: 16084810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical efficiency and wheelchair performance during and after spinal cord injury rehabilitation.
    de Groot S; Dallmeijer AJ; van Asbeck FW; Post MW; Bussmann JB; van der Woude L
    Int J Sports Med; 2007 Oct; 28(10):880-6. PubMed ID: 17436205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redefining the manual wheelchair stroke cycle: identification and impact of nonpropulsive pushrim contact.
    Kwarciak AM; Sisto SA; Yarossi M; Price R; Komaroff E; Boninger ML
    Arch Phys Med Rehabil; 2009 Jan; 90(1):20-6. PubMed ID: 19154825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of vibrations induced during wheelchair propulsion.
    VanSickle DP; Cooper RA; Boninger ML; DiGiovine CP
    J Rehabil Res Dev; 2001; 38(4):409-21. PubMed ID: 11563494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of backrest height on wheelchair propulsion biomechanics for level and uphill conditions.
    Yang YS; Koontz AM; Yeh SJ; Chang JJ
    Arch Phys Med Rehabil; 2012 Apr; 93(4):654-9. PubMed ID: 22325682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    Med Eng Phys; 2005 Jan; 27(1):41-9. PubMed ID: 15604003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A systematic review: the influence of real time feedback on wheelchair propulsion biomechanics.
    Symonds A; Barbareschi G; Taylor S; Holloway C
    Disabil Rehabil Assist Technol; 2018 Jan; 13(1):47-53. PubMed ID: 28102100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of 2-speed geared manual wheelchair propulsion on shoulder pain and function.
    Finley MA; Rodgers MM
    Arch Phys Med Rehabil; 2007 Dec; 88(12):1622-7. PubMed ID: 18047877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Course of gross mechanical efficiency in handrim wheelchair propulsion during rehabilitation of people with spinal cord injury: a prospective cohort study.
    de Groot S; Dallmeijer AJ; Kilkens OJ; van Asbeck FW; Nene AV; Angenot EL; Post MW; van der Woude LH
    Arch Phys Med Rehabil; 2005 Jul; 86(7):1452-60. PubMed ID: 16003680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of normative values for 20 min exercise of wheelchair propulsion by spinal cord injury patients.
    Coutinho AC; Neto FR; Perna CE
    Spinal Cord; 2013 Oct; 51(10):755-60. PubMed ID: 24042996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shoulder joint kinetics and pathology in manual wheelchair users.
    Mercer JL; Boninger M; Koontz A; Ren D; Dyson-Hudson T; Cooper R
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):781-9. PubMed ID: 16808992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.