BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

708 related articles for article (PubMed ID: 19253097)

  • 41. Relationship between linear velocity and tangential push force while turning to change the direction of the manual wheelchair.
    Hwang S; Lin YS; Hogaboom NS; Wang LH; Koontz AM
    Biomed Tech (Berl); 2017 Aug; 62(4):439-445. PubMed ID: 27639264
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training.
    de Groot S; de Bruin M; Noomen SP; van der Woude LH
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):434-41. PubMed ID: 18077065
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The differences in self-esteem, function, and participation between adults with low cervical motor tetraplegia who use power or manual wheelchairs.
    Hastings J; Robins H; Griffiths Y; Hamilton C
    Arch Phys Med Rehabil; 2011 Nov; 92(11):1785-8. PubMed ID: 21762872
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomechanic evaluation of upper-extremity symmetry during manual wheelchair propulsion over varied terrain.
    Hurd WJ; Morrow MM; Kaufman KR; An KN
    Arch Phys Med Rehabil; 2008 Oct; 89(10):1996-2002. PubMed ID: 18929029
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of spinal cord injury level on the activity of shoulder muscles during wheelchair propulsion: an electromyographic study.
    Mulroy SJ; Farrokhi S; Newsam CJ; Perry J
    Arch Phys Med Rehabil; 2004 Jun; 85(6):925-34. PubMed ID: 15179646
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wheelchair propulsion test: development and measurement properties of a new test for manual wheelchair users.
    Askari S; Kirby RL; Parker K; Thompson K; O'Neill J
    Arch Phys Med Rehabil; 2013 Sep; 94(9):1690-8. PubMed ID: 23499781
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of overground and treadmill propulsion patterns of manual wheelchair users with tetraplegia.
    Stephens CL; Engsberg JR
    Disabil Rehabil Assist Technol; 2010; 5(6):420-7. PubMed ID: 20441443
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Shoulder kinematics and kinetics during two speeds of wheelchair propulsion.
    Koontz AM; Cooper RA; Boninger ML; Souza AL; Fay BT
    J Rehabil Res Dev; 2002; 39(6):635-49. PubMed ID: 17943666
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surface electromyography activity of upper limb muscle during wheelchair propulsion: Influence of wheelchair configuration.
    Louis N; Gorce P
    Clin Biomech (Bristol, Avon); 2010 Nov; 25(9):879-85. PubMed ID: 20846767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface.
    Hughes CJ; Weimar WH; Sheth PN; Brubaker CE
    Arch Phys Med Rehabil; 1992 Mar; 73(3):263-9. PubMed ID: 1543431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of hand cycle training on physical capacity in individuals with tetraplegia: a clinical trial.
    Valent LJ; Dallmeijer AJ; Houdijk H; Slootman HJ; Janssen TW; Post MW; van der Woude LH
    Phys Ther; 2009 Oct; 89(10):1051-60. PubMed ID: 19643834
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Manual wheelchair stroke characteristics during an extended period of propulsion.
    Rice I; Impink B; Niyonkuru C; Boninger M
    Spinal Cord; 2009 May; 47(5):413-7. PubMed ID: 19002155
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sensory stimulation augments the effects of massed practice training in persons with tetraplegia.
    Beekhuizen KS; Field-Fote EC
    Arch Phys Med Rehabil; 2008 Apr; 89(4):602-8. PubMed ID: 18373988
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hand rim wheelchair propulsion training using biomechanical real-time visual feedback based on motor learning theory principles.
    Rice I; Gagnon D; Gallagher J; Boninger M
    J Spinal Cord Med; 2010; 33(1):33-42. PubMed ID: 20397442
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomechanical analysis of functional electrical stimulation on trunk musculature during wheelchair propulsion.
    Yang YS; Koontz AM; Triolo RJ; Cooper RA; Boninger ML
    Neurorehabil Neural Repair; 2009 Sep; 23(7):717-25. PubMed ID: 19261768
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Shoulder muscular demand during lever-activated vs pushrim wheelchair propulsion in persons with spinal cord injury.
    Requejo PS; Lee SE; Mulroy SJ; Haubert LL; Bontrager EL; Gronley JK; Perry J
    J Spinal Cord Med; 2008; 31(5):568-77. PubMed ID: 19086715
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adapted manual wheelchair circuit: test-retest reliability and discriminative validity in persons with spinal cord injury.
    Cowan RE; Nash MS; de Groot S; van der Woude LH
    Arch Phys Med Rehabil; 2011 Aug; 92(8):1270-80. PubMed ID: 21807146
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pushrim biomechanical changes with progressive increases in slope during motorized treadmill manual wheelchair propulsion in individuals with spinal cord injury.
    Gagnon DH; Babineau AC; Champagne A; Desroches G; Aissaoui R
    J Rehabil Res Dev; 2014; 51(5):789-802. PubMed ID: 25357244
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reduced finger and wrist flexor activity during propulsion with a new flexible handrim.
    Richter WM; Rodriguez R; Woods KR; Karpinski AP; Axelson PW
    Arch Phys Med Rehabil; 2006 Dec; 87(12):1643-7. PubMed ID: 17141646
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinematics of wheelchair propulsion in adults and children with spinal cord injury.
    Bednarczyk JH; Sanderson DJ
    Arch Phys Med Rehabil; 1994 Dec; 75(12):1327-34. PubMed ID: 7993172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.