These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19253278)

  • 1. How specific is my SRM?: The issue of precursor and product ion redundancy.
    Sherman J; McKay MJ; Ashman K; Molloy MP
    Proteomics; 2009 Mar; 9(5):1120-3. PubMed ID: 19253278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An iterative strategy for precursor ion selection for LC-MS/MS based shotgun proteomics.
    Zerck A; Nordhoff E; Resemann A; Mirgorodskaya E; Suckau D; Reinert K; Lehrach H; Gobom J
    J Proteome Res; 2009 Jul; 8(7):3239-51. PubMed ID: 19402737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining selected reaction monitoring with discovery proteomics in limited biological samples.
    Gupta MK; Jung JW; Uhm SJ; Lee H; Lee HT; Kim KP
    Proteomics; 2009 Nov; 9(21):4834-6. PubMed ID: 19810035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple products monitoring as a robust approach for peptide quantification.
    Baek JH; Kim H; Shin B; Yu MH
    J Proteome Res; 2009 Jul; 8(7):3625-32. PubMed ID: 19505066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free computational resources for designing selected reaction monitoring transitions.
    Cham Mead JA; Bianco L; Bessant C
    Proteomics; 2010 Mar; 10(6):1106-26. PubMed ID: 20077412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying selected reaction monitoring to targeted proteomics.
    Calvo E; Camafeita E; Fernández-Gutiérrez B; López JA
    Expert Rev Proteomics; 2011 Apr; 8(2):165-73. PubMed ID: 21501010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-specific gas-phase fractionation strategy for improved shotgun proteomic profiling of proteotypic peptides.
    Scherl A; Shaffer SA; Taylor GK; Kulasekara HD; Miller SI; Goodlett DR
    Anal Chem; 2008 Feb; 80(4):1182-91. PubMed ID: 18211032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress in selected reaction monitoring MS-driven plasma protein biomarker analysis.
    Chiu CL; Randall S; Molloy MP
    Bioanalysis; 2009 Jul; 1(4):847-55. PubMed ID: 21083142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selected reaction monitoring applied to proteomics.
    Gallien S; Duriez E; Domon B
    J Mass Spectrom; 2011 Mar; 46(3):298-312. PubMed ID: 21394846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational tool to detect and avoid redundancy in selected reaction monitoring.
    Röst H; Malmström L; Aebersold R
    Mol Cell Proteomics; 2012 Aug; 11(8):540-9. PubMed ID: 22535207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global quantitative proteomic profiling through 18O-labeling in combination with MS/MS spectra analysis.
    White CA; Oey N; Emili A
    J Proteome Res; 2009 Jul; 8(7):3653-65. PubMed ID: 19400582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basic design of MRM assays for peptide quantification.
    James A; Jorgensen C
    Methods Mol Biol; 2010; 658():167-85. PubMed ID: 20839104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS.
    Geromanos SJ; Vissers JP; Silva JC; Dorschel CA; Li GZ; Gorenstein MV; Bateman RH; Langridge JI
    Proteomics; 2009 Mar; 9(6):1683-95. PubMed ID: 19294628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selected reaction monitoring mass spectrometry: a methodology overview.
    Ebhardt HA
    Methods Mol Biol; 2014; 1072():209-22. PubMed ID: 24136525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS.
    Liu Y; Hüttenhain R; Surinova S; Gillet LC; Mouritsen J; Brunner R; Navarro P; Aebersold R
    Proteomics; 2013 Apr; 13(8):1247-56. PubMed ID: 23322582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated serum proteomic approach capable of monitoring the low molecular weight proteome with sequencing of intermediate to large peptides.
    Merrell K; Thulin CD; Esplin MS; Graves SW
    Rapid Commun Mass Spectrom; 2009 Sep; 23(17):2685-96. PubMed ID: 19630037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted protein identification, quantification and reporting for high-resolution nanoflow targeted peptide monitoring.
    Hewel JA; Phanse S; Liu J; Bousette N; Gramolini A; Emili A
    J Proteomics; 2013 Apr; 81():159-72. PubMed ID: 23124093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics: from hypothesis to quantitative assay on a single platform. Guidelines for developing MRM assays using ion trap mass spectrometers.
    Han B; Higgs RE
    Brief Funct Genomic Proteomic; 2008 Sep; 7(5):340-54. PubMed ID: 18579614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/Orbitrap mass spectrometer.
    Saba J; Bonneil E; Pomiès C; Eng K; Thibault P
    J Proteome Res; 2009 Jul; 8(7):3355-66. PubMed ID: 19469569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical design of quantitative mass spectrometry-based proteomic experiments.
    Oberg AL; Vitek O
    J Proteome Res; 2009 May; 8(5):2144-56. PubMed ID: 19222236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.