These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19253280)

  • 1. Staphylococcus aureus ClpC ATPase is a late growth phase effector of metabolism and persistence.
    Chatterjee I; Schmitt S; Batzilla CF; Engelmann S; Keller A; Ring MW; Kautenburger R; Ziebuhr W; Hecker M; Preissner KT; Bischoff M; Proctor RA; Beck HP; Lenhof HP; Somerville GA; Herrmann M
    Proteomics; 2009 Mar; 9(5):1152-76. PubMed ID: 19253280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Staphylococcus aureus ClpC is involved in protection of carbon-metabolizing enzymes from carbonylation during stationary growth phase.
    Chatterjee I; Maisonneuve E; Ezraty B; Herrmann M; Dukan S
    Int J Med Microbiol; 2011 Apr; 301(4):341-6. PubMed ID: 21273120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Senescence of staphylococci: using functional genomics to unravel the roles of ClpC ATPase during late stationary phase.
    Chatterjee I; Neumayer D; Herrmann M
    Int J Med Microbiol; 2010 Feb; 300(2-3):130-6. PubMed ID: 19931487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Staphylococcus aureus ClpC is required for stress resistance, aconitase activity, growth recovery, and death.
    Chatterjee I; Becker P; Grundmeier M; Bischoff M; Somerville GA; Peters G; Sinha B; Harraghy N; Proctor RA; Herrmann M
    J Bacteriol; 2005 Jul; 187(13):4488-96. PubMed ID: 15968059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus.
    Frees D; Chastanet A; Qazi S; Sørensen K; Hill P; Msadek T; Ingmer H
    Mol Microbiol; 2004 Dec; 54(5):1445-62. PubMed ID: 15554981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Staphylococcus aureus cidC gene encodes a pyruvate oxidase that affects acetate metabolism and cell death in stationary phase.
    Patton TG; Rice KC; Foster MK; Bayles KW
    Mol Microbiol; 2005 Jun; 56(6):1664-74. PubMed ID: 15916614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small colony variants of Staphylococcus aureus reveal distinct protein profiles.
    Kriegeskorte A; König S; Sander G; Pirkl A; Mahabir E; Proctor RA; von Eiff C; Peters G; Becker K
    Proteomics; 2011 Jun; 11(12):2476-90. PubMed ID: 21595038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microarray analysis of toxicogenomic effects of triclosan on Staphylococcus aureus.
    Jang HJ; Chang MW; Toghrol F; Bentley WE
    Appl Microbiol Biotechnol; 2008 Mar; 78(4):695-707. PubMed ID: 18210102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ClpCP Complex Modulates Respiratory Metabolism in Staphylococcus aureus and Is Regulated in a SrrAB-Dependent Manner.
    Mashruwala AA; Eilers BJ; Fuchs AL; Norambuena J; Earle CA; van de Guchte A; Tripet BP; Copié V; Boyd JM
    J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31109995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SAV1322 gene from Staphylococcus aureus: genomic and proteomic approaches to identification and characterization of gene function.
    Kim JW; Kim HK; Kang GS; Kim IH; Kim HS; Lee YS; Yoo JI
    BMC Microbiol; 2016 Sep; 16(1):206. PubMed ID: 27599615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production profile of the soluble lytic transglycosylase homologue in Staphylococcus aureus during bacterial proliferation.
    Sakata N; Mukai T
    FEMS Immunol Med Microbiol; 2007 Mar; 49(2):288-95. PubMed ID: 17328763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A metabolomics and proteomics study of the adaptation of Staphylococcus aureus to glucose starvation.
    Liebeke M; Dörries K; Zühlke D; Bernhardt J; Fuchs S; Pané-Farré J; Engelmann S; Völker U; Bode R; Dandekar T; Lindequist U; Hecker M; Lalk M
    Mol Biosyst; 2011 Apr; 7(4):1241-53. PubMed ID: 21327190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rerouting of pyruvate metabolism during acid adaptation in Lactobacillus bulgaricus.
    Fernandez A; Ogawa J; Penaud S; Boudebbouze S; Ehrlich D; van de Guchte M; Maguin E
    Proteomics; 2008 Aug; 8(15):3154-63. PubMed ID: 18615427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of Staphylococcus aureus exposed to HCl and organic acid stress.
    Rode TM; Møretrø T; Langsrud S; Langsrud O; Vogt G; Holck A
    Can J Microbiol; 2010 Sep; 56(9):777-92. PubMed ID: 20921988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A global view of Staphylococcus aureus whole genome expression upon internalization in human epithelial cells.
    Garzoni C; Francois P; Huyghe A; Couzinet S; Tapparel C; Charbonnier Y; Renzoni A; Lucchini S; Lew DP; Vaudaux P; Kelley WL; Schrenzel J
    BMC Genomics; 2007 Jun; 8():171. PubMed ID: 17570841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ClpC affects the intracellular survival capacity of Staphylococcus aureus in non-professional phagocytic cells.
    Gunaratnam G; Tuchscherr L; Elhawy MI; Bertram R; Eisenbeis J; Spengler C; Tschernig T; Löffler B; Somerville GA; Jacobs K; Herrmann M; Bischoff M
    Sci Rep; 2019 Nov; 9(1):16267. PubMed ID: 31700127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological proteomics and stress/starvation responses in Bacillus subtilis and Staphylococcus aureus.
    Hecker M; Reder A; Fuchs S; Pagels M; Engelmann S
    Res Microbiol; 2009 May; 160(4):245-58. PubMed ID: 19403106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic and metabolic responses of Staphylococcus aureus exposed to supra-physiological temperatures.
    Fleury B; Kelley WL; Lew D; Götz F; Proctor RA; Vaudaux P
    BMC Microbiol; 2009 Apr; 9():76. PubMed ID: 19386094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Staphylococcus aureus physiological growth limitations: insights from flux calculations built on proteomics and external metabolite data.
    Liang C; Liebeke M; Schwarz R; Zühlke D; Fuchs S; Menschner L; Engelmann S; Wolz C; Jaglitz S; Bernhardt J; Hecker M; Lalk M; Dandekar T
    Proteomics; 2011 May; 11(10):1915-35. PubMed ID: 21472852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation.
    Soutourina O; Poupel O; Coppée JY; Danchin A; Msadek T; Martin-Verstraete I
    Mol Microbiol; 2009 Jul; 73(2):194-211. PubMed ID: 19508281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.