BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 19253409)

  • 1. Xhairy2 functions in Xenopus lens development by regulating p27(xic1) expression.
    Murato Y; Hashimoto C
    Dev Dyn; 2009 Sep; 238(9):2179-92. PubMed ID: 19253409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xenopus hairy2 functions in neural crest formation by maintaining cells in a mitotic and undifferentiated state.
    Nagatomo K; Hashimoto C
    Dev Dyn; 2007 Jun; 236(6):1475-83. PubMed ID: 17436284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lens and retina formation require expression of Pitx3 in Xenopus pre-lens ectoderm.
    Khosrowshahian F; Wolanski M; Chang WY; Fujiki K; Jacobs L; Crawford MJ
    Dev Dyn; 2005 Nov; 234(3):577-89. PubMed ID: 16170783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27(XIC1) and imparting a neural fate.
    Hardcastle Z; Papalopulu N
    Development; 2000 Mar; 127(6):1303-14. PubMed ID: 10683182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cdk inhibitor p27Xic1 is required for differentiation of primary neurones in Xenopus.
    Vernon AE; Devine C; Philpott A
    Development; 2003 Jan; 130(1):85-92. PubMed ID: 12441293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Psf2 plays important roles in normal eye development in Xenopus laevis.
    Walter BE; Perry KJ; Fukui L; Malloch EL; Wever J; Henry JJ
    Mol Vis; 2008 May; 14():906-21. PubMed ID: 18509549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene activation during early stages of lens induction in Xenopus.
    Zygar CA; Cook TL; Grainger RM
    Development; 1998 Sep; 125(17):3509-19. PubMed ID: 9693153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depletion of the cell-cycle inhibitor p27(Xic1) impairs neuronal differentiation and increases the number of ElrC(+) progenitor cells in Xenopus tropicalis.
    Carruthers S; Mason J; Papalopulu N
    Mech Dev; 2003 May; 120(5):607-16. PubMed ID: 12782277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single cdk inhibitor, p27Xic1, functions beyond cell cycle regulation to promote muscle differentiation in Xenopus.
    Vernon AE; Philpott A
    Development; 2003 Jan; 130(1):71-83. PubMed ID: 12441292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal leucine-rich repeat 6 (XlNLRR-6) is required for late lens and retina development in Xenopus laevis.
    Wolfe AD; Henry JJ
    Dev Dyn; 2006 Apr; 235(4):1027-41. PubMed ID: 16456849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular profiling: gene expression reveals discrete phases of lens induction and development in Xenopus laevis.
    Walter BE; Tian Y; Garlisch AK; Carinato ME; Elkins MB; Wolfe AD; Schaefer JJ; Perry KJ; Henry JJ
    Mol Vis; 2004 Mar; 10():186-98. PubMed ID: 15064684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression profiles of lens regeneration and development in Xenopus laevis.
    Malloch EL; Perry KJ; Fukui L; Johnson VR; Wever J; Beck CW; King MW; Henry JJ
    Dev Dyn; 2009 Sep; 238(9):2340-56. PubMed ID: 19681139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The requirement of histone modification by PRDM12 and Kdm4a for the development of pre-placodal ectoderm and neural crest in Xenopus.
    Matsukawa S; Miwata K; Asashima M; Michiue T
    Dev Biol; 2015 Mar; 399(1):164-176. PubMed ID: 25576027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of a novel gene, xMADML, involved in Xenopus laevis eye development.
    Elkins MB; Henry JJ
    Dev Dyn; 2006 Jul; 235(7):1845-57. PubMed ID: 16607642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p27Xic1.
    Movassagh M; Philpott A
    Cardiovasc Res; 2008 Aug; 79(3):436-47. PubMed ID: 18442987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Notch targets the Cdk inhibitor Xic1 to regulate differentiation but not the cell cycle in neurons.
    Vernon AE; Movassagh M; Horan I; Wise H; Ohnuma S; Philpott A
    EMBO Rep; 2006 Jun; 7(6):643-8. PubMed ID: 16648822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The C-terminal domain of the Xenopus cyclin-dependent kinase inhibitor, p27Xic1, is both necessary and sufficient for phosphorylation-independent proteolysis.
    Chuang LC; Zhu XN; Herrera CR; Tseng HM; Pfleger CM; Block K; Yew PR
    J Biol Chem; 2005 Oct; 280(42):35290-8. PubMed ID: 16118210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C8orf46 homolog encodes a novel protein Vexin that is required for neurogenesis in Xenopus laevis.
    Moore KB; Logan MA; Aldiri I; Roberts JM; Steele M; Vetter ML
    Dev Biol; 2018 May; 437(1):27-40. PubMed ID: 29518376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extralenticular expression of Xenopus laevis alpha-, beta-, and gamma-crystallin genes.
    Brunekreef GA; van Genesen ST; Destrée OH; Lubsen NH
    Invest Ophthalmol Vis Sci; 1997 Dec; 38(13):2764-71. PubMed ID: 9418729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin and segregation of cranial placodes in Xenopus laevis.
    Pieper M; Eagleson GW; Wosniok W; Schlosser G
    Dev Biol; 2011 Dec; 360(2):257-75. PubMed ID: 21989028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.