These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 19253985)
1. Chemical issues addressing the construction of the distal Ni[cysteine-glycine-cysteine]2- site of acetyl CoA synthase: why not copper? Green KN; Brothers SM; Lee B; Darensbourg MY; Rockcliffe DA Inorg Chem; 2009 Apr; 48(7):2780-92. PubMed ID: 19253985 [TBL] [Abstract][Full Text] [Related]
2. Cys-Gly-Cys tripeptide complexes of nickel: binuclear analogues for the catalytic site in acetyl coenzyme a synthase. Krishnan R; Riordan CG J Am Chem Soc; 2004 Apr; 126(14):4484-5. PubMed ID: 15070343 [TBL] [Abstract][Full Text] [Related]
3. Bisamidate and mixed amine/amidate NiN2S2 complexes as models for nickel-containing acetyl coenzyme A synthase and superoxide dismutase: an experimental and computational study. Mathrubootham V; Thomas J; Staples R; McCraken J; Shearer J; Hegg EL Inorg Chem; 2010 Jun; 49(12):5393-406. PubMed ID: 20507077 [TBL] [Abstract][Full Text] [Related]
4. Evidence that NiNi acetyl-CoA synthase is active and that the CuNi enzyme is not. Seravalli J; Xiao Y; Gu W; Cramer SP; Antholine WE; Krymov V; Gerfen GJ; Ragsdale SW Biochemistry; 2004 Apr; 43(13):3944-55. PubMed ID: 15049702 [TBL] [Abstract][Full Text] [Related]
5. A nickel tripeptide as a metallodithiolate ligand anchor for resin-bound organometallics. Green KN; Jeffery SP; Reibenspies JH; Darensbourg MY J Am Chem Soc; 2006 May; 128(19):6493-8. PubMed ID: 16683815 [TBL] [Abstract][Full Text] [Related]
6. Computational studies on the A cluster of acetyl-coenzyme A synthase: geometric and electronic properties of the NiFeC species and mechanistic implications. Schenker RP; Brunold TC J Am Chem Soc; 2003 Nov; 125(46):13962-3. PubMed ID: 14611224 [TBL] [Abstract][Full Text] [Related]
8. Infrared and EPR spectroscopic characterization of a Ni(I) species formed by photolysis of a catalytically competent Ni(I)-CO intermediate in the acetyl-CoA synthase reaction. Bender G; Stich TA; Yan L; Britt RD; Cramer SP; Ragsdale SW Biochemistry; 2010 Sep; 49(35):7516-23. PubMed ID: 20669901 [TBL] [Abstract][Full Text] [Related]
10. Functional copper at the acetyl-CoA synthase active site. Seravalli J; Gu W; Tam A; Strauss E; Begley TP; Cramer SP; Ragsdale SW Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3689-94. PubMed ID: 12589021 [TBL] [Abstract][Full Text] [Related]
11. Influence of mixed thiolate/thioether versus dithiolate coordination on the accessibility of the uncommon +I and +III oxidation states for the nickel ion: an experimental and computational study. Gennari M; Orio M; Pécaut J; Bothe E; Neese F; Collomb MN; Duboc C Inorg Chem; 2011 Apr; 50(8):3707-16. PubMed ID: 21428312 [TBL] [Abstract][Full Text] [Related]
12. Structural models of the bimetallic subunit at the A-cluster of acetyl coenzyme a synthase/CO dehydrogenase: binuclear sulfur-bridged Ni-Cu and Ni-Ni complexes and their reactions with CO. Harrop TC; Olmstead MM; Mascharak PK J Am Chem Soc; 2004 Nov; 126(45):14714-5. PubMed ID: 15535684 [TBL] [Abstract][Full Text] [Related]
13. Model Complexes for the Ni Bhandari A; Chandra Maji R; Mishra S; Kumar A; Barman SK; Das PP; Ghiassi KB; Olmstead MM; Patra AK Inorg Chem; 2018 Nov; 57(21):13713-13727. PubMed ID: 30339375 [TBL] [Abstract][Full Text] [Related]
14. Exploring the effects of H-bonding in synthetic analogues of nickel superoxide dismutase (Ni-SOD): experimental and theoretical implications for protection of the Ni-SCys bond. Gale EM; Narendrapurapu BS; Simmonett AC; Schaefer HF; Harrop TC Inorg Chem; 2010 Aug; 49(15):7080-96. PubMed ID: 20575514 [TBL] [Abstract][Full Text] [Related]
15. Five coordinate M(II)-diphenolate [M = Zn(II), Ni(II), and Cu(II)] Schiff base complexes exhibiting metal- and ligand-based redox chemistry. Franks M; Gadzhieva A; Ghandhi L; Murrell D; Blake AJ; Davies ES; Lewis W; Moro F; McMaster J; Schröder M Inorg Chem; 2013 Jan; 52(2):660-70. PubMed ID: 23297765 [TBL] [Abstract][Full Text] [Related]
16. Thiolate-bridged nickel-copper complexes: a binuclear model for the catalytic site of acetyl coenzyme a synthase? Krishnan R; Voo JK; Riordan CG; Zahkarov L; Rheingold AL J Am Chem Soc; 2003 Apr; 125(15):4422-3. PubMed ID: 12683803 [TBL] [Abstract][Full Text] [Related]
17. A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. Svetlitchnyi V; Dobbek H; Meyer-Klaucke W; Meins T; Thiele B; Römer P; Huber R; Meyer O Proc Natl Acad Sci U S A; 2004 Jan; 101(2):446-51. PubMed ID: 14699043 [TBL] [Abstract][Full Text] [Related]
18. Synthetic analogues of the active site of the A-cluster of acetyl coenzyme A synthase/CO dehydrogenase: syntheses, structures, and reactions with CO. Harrop TC; Olmstead MM; Mascharak PK Inorg Chem; 2006 Apr; 45(8):3424-36. PubMed ID: 16602803 [TBL] [Abstract][Full Text] [Related]
19. N2S2Ni metallodithiolate complexes as ligands: structural and aqueous solution quantitative studies of the ability of metal ions to form M-S-Ni bridges to mercapto groups coordinated to nickel(II). implications for acetyl coenzyme A synthase. Golden ML; Whaley CM; Rampersad MV; Reibenspies JH; Hancock RD; Darensbourg MY Inorg Chem; 2005 Feb; 44(4):875-83. PubMed ID: 15859264 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper. Bramlett MR; Tan X; Lindahl PA J Am Chem Soc; 2003 Aug; 125(31):9316-7. PubMed ID: 12889960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]