BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19254115)

  • 1. Polyphenol-stabilized tubular elastin scaffolds for tissue engineered vascular grafts.
    Chuang TH; Stabler C; Simionescu A; Simionescu DT
    Tissue Eng Part A; 2009 Oct; 15(10):2837-51. PubMed ID: 19254115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of diabetes-related complications in implanted collagen and elastin scaffolds using matrix-binding polyphenol.
    Chow JP; Simionescu DT; Warner H; Wang B; Patnaik SS; Liao J; Simionescu A
    Biomaterials; 2013 Jan; 34(3):685-95. PubMed ID: 23103157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilized Collagen and Elastin-Based Scaffolds for Mitral Valve Tissue Engineering.
    Deborde C; Simionescu DT; Wright C; Liao J; Sierad LN; Simionescu A
    Tissue Eng Part A; 2016 Nov; 22(21-22):1241-1251. PubMed ID: 27608885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts.
    Berglund JD; Nerem RM; Sambanis A
    Tissue Eng; 2004; 10(9-10):1526-35. PubMed ID: 15588412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The performance of cross-linked acellular arterial scaffolds as vascular grafts; pre-clinical testing in direct and isolation loop circulatory models.
    Pennel T; Fercana G; Bezuidenhout D; Simionescu A; Chuang TH; Zilla P; Simionescu D
    Biomaterials; 2014 Aug; 35(24):6311-22. PubMed ID: 24816365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilized collagen scaffolds for heart valve tissue engineering.
    Tedder ME; Liao J; Weed B; Stabler C; Zhang H; Simionescu A; Simionescu DT
    Tissue Eng Part A; 2009 Jun; 15(6):1257-68. PubMed ID: 18928400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platform technologies for decellularization, tunic-specific cell seeding, and in vitro conditioning of extended length, small diameter vascular grafts.
    Fercana G; Bowser D; Portilla M; Langan EM; Carsten CG; Cull DL; Sierad LN; Simionescu DT
    Tissue Eng Part C Methods; 2014 Dec; 20(12):1016-27. PubMed ID: 24749889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of an elastic decellularized tendon-derived scaffold for the vascular tissue engineering application.
    Ghazanfari S; Alberti KA; Xu Q; Khademhosseini A
    J Biomed Mater Res A; 2019 Jun; 107(6):1225-1234. PubMed ID: 30684384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel porous aortic elastin and collagen scaffolds for tissue engineering.
    Lu Q; Ganesan K; Simionescu DT; Vyavahare NR
    Biomaterials; 2004 Oct; 25(22):5227-37. PubMed ID: 15110474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of heparinized and hepatocyte growth factor-coated acellular scaffolds using porcine carotid arteries.
    Cheng J; Wang C; Guo L; Gu Y
    J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35317. PubMed ID: 37584376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate.
    Crapo PM; Wang Y
    Biomaterials; 2010 Mar; 31(7):1626-35. PubMed ID: 19962188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical fabrication of a biomimetic elastin-containing bi-layered scaffold for vascular tissue engineering.
    Nguyen TU; Shojaee M; Bashur CA; Kishore V
    Biofabrication; 2018 Nov; 11(1):015007. PubMed ID: 30411718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural requirements for stabilization of vascular elastin by polyphenolic tannins.
    Isenburg JC; Karamchandani NV; Simionescu DT; Vyavahare NR
    Biomaterials; 2006 Jul; 27(19):3645-51. PubMed ID: 16527345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular tissue construction on poly(ε-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size.
    Mathews A; Colombus S; Krishnan VK; Krishnan LK
    J Tissue Eng Regen Med; 2012 Jun; 6(6):451-61. PubMed ID: 21800434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility and remodeling potential of pure arterial elastin and collagen scaffolds.
    Simionescu DT; Lu Q; Song Y; Lee JS; Rosenbalm TN; Kelley C; Vyavahare NR
    Biomaterials; 2006 Feb; 27(5):702-13. PubMed ID: 16048731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.
    Henry JJD; Yu J; Wang A; Lee R; Fang J; Li S
    Biofabrication; 2017 Aug; 9(3):035007. PubMed ID: 28817384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Biomimetic Approach Utilizing Pulsatile Perfusion Generates Contractile Vascular Grafts.
    Knox C; Garcia K; Tran J; Wilson SM; Blood AB; Kearns-Jonker M; Martens TP
    Tissue Eng Part A; 2023 Jul; 29(13-14):358-371. PubMed ID: 37071180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matrix composition and mechanics of decellularized lung scaffolds.
    Petersen TH; Calle EA; Colehour MB; Niklason LE
    Cells Tissues Organs; 2012; 195(3):222-31. PubMed ID: 21502745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of elastin incorporation into electrochemically aligned collagen fibers on mechanical properties and smooth muscle cell phenotype.
    Nguyen TU; Bashur CA; Kishore V
    Biomed Mater; 2016 Mar; 11(2):025008. PubMed ID: 26987364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibronectin promotes elastin deposition, elasticity and mechanical strength in cellularised collagen-based scaffolds.
    Pezzoli D; Di Paolo J; Kumra H; Fois G; Candiani G; Reinhardt DP; Mantovani D
    Biomaterials; 2018 Oct; 180():130-142. PubMed ID: 30036726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.