BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 19254539)

  • 1. Characterization of engineered channelrhodopsin variants with improved properties and kinetics.
    Lin JY; Lin MZ; Steinbach P; Tsien RY
    Biophys J; 2009 Mar; 96(5):1803-14. PubMed ID: 19254539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2.
    Inaguma A; Tsukamoto H; Kato HE; Kimura T; Ishizuka T; Oishi S; Yawo H; Nureki O; Furutani Y
    J Biol Chem; 2015 May; 290(18):11623-34. PubMed ID: 25796616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function.
    Kaufmann JCD; Krause BS; Grimm C; Ritter E; Hegemann P; Bartl FJ
    J Biol Chem; 2017 Aug; 292(34):14205-14216. PubMed ID: 28659342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
    Nagel G; Szellas T; Huhn W; Kateriya S; Adeishvili N; Berthold P; Ollig D; Hegemann P; Bamberg E
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13940-5. PubMed ID: 14615590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation.
    Tsunoda SP; Hegemann P
    Photochem Photobiol; 2009; 85(2):564-9. PubMed ID: 19192197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin.
    Wen L; Wang H; Tanimoto S; Egawa R; Matsuzaka Y; Mushiake H; Ishizuka T; Yawo H
    PLoS One; 2010 Sep; 5(9):e12893. PubMed ID: 20886118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis.
    Govorunova EG; Sineshchekov OA; Li H; Janz R; Spudich JL
    J Biol Chem; 2013 Oct; 288(41):29911-22. PubMed ID: 23995841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast optogenetic control.
    Gunaydin LA; Yizhar O; Berndt A; Sohal VS; Deisseroth K; Hegemann P
    Nat Neurosci; 2010 Mar; 13(3):387-92. PubMed ID: 20081849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosensory functions of channelrhodopsins in native algal cells.
    Sineshchekov OA; Govorunova EG; Spudich JL
    Photochem Photobiol; 2009; 85(2):556-63. PubMed ID: 19222796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin.
    Li X; Gutierrez DV; Hanson MG; Han J; Mark MD; Chiel H; Hegemann P; Landmesser LT; Herlitze S
    Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17816-21. PubMed ID: 16306259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic excitation of neurons with channelrhodopsins: light instrumentation, expression systems, and channelrhodopsin variants.
    Lin JY
    Prog Brain Res; 2012; 196():29-47. PubMed ID: 22341319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel.
    Berndt A; Lee SY; Ramakrishnan C; Deisseroth K
    Science; 2014 Apr; 344(6182):420-4. PubMed ID: 24763591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the spatial resolution of Channelrhodopsin-2 activation.
    Schoenenberger P; Grunditz A; Rose T; Oertner TG
    Brain Cell Biol; 2008 Aug; 36(1-4):119-27. PubMed ID: 18654856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the channelrhodopsin light-gated cation channel.
    Kato HE; Zhang F; Yizhar O; Ramakrishnan C; Nishizawa T; Hirata K; Ito J; Aita Y; Tsukazaki T; Hayashi S; Hegemann P; Maturana AD; Ishitani R; Deisseroth K; Nureki O
    Nature; 2012 Jan; 482(7385):369-74. PubMed ID: 22266941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Channelrhodopsin-1 initiates phototaxis and photophobic responses in chlamydomonas by immediate light-induced depolarization.
    Berthold P; Tsunoda SP; Ernst OP; Mages W; Gradmann D; Hegemann P
    Plant Cell; 2008 Jun; 20(6):1665-77. PubMed ID: 18552201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae.
    Pulver SR; Pashkovski SL; Hornstein NJ; Garrity PA; Griffith LC
    J Neurophysiol; 2009 Jun; 101(6):3075-88. PubMed ID: 19339465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine Substitution and Labeling Provide Insight into Channelrhodopsin-2 Ion Conductance.
    Richards R; Dempski RE
    Biochemistry; 2015 Sep; 54(37):5665-8. PubMed ID: 26322955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomistic Study of Intramolecular Interactions in the Closed-State Channelrhodopsin Chimera, C1C2.
    VanGordon MR; Gyawali G; Rick SW; Rempe SB
    Biophys J; 2017 Mar; 112(5):943-952. PubMed ID: 28297653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate residue 90 in the predicted transmembrane domain 2 is crucial for cation flux through channelrhodopsin 2.
    Ruffert K; Himmel B; Lall D; Bamann C; Bamberg E; Betz H; Eulenburg V
    Biochem Biophys Res Commun; 2011 Jul; 410(4):737-43. PubMed ID: 21683688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas.
    Wang H; Sugiyama Y; Hikima T; Sugano E; Tomita H; Takahashi T; Ishizuka T; Yawo H
    J Biol Chem; 2009 Feb; 284(9):5685-96. PubMed ID: 19103605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.