BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 19254539)

  • 21. Channelrhodopsin-1 Phosphorylation Changes with Phototactic Behavior and Responds to Physiological Stimuli in
    Böhm M; Boness D; Fantisch E; Erhard H; Frauenholz J; Kowalzyk Z; Marcinkowski N; Kateriya S; Hegemann P; Kreimer G
    Plant Cell; 2019 Apr; 31(4):886-910. PubMed ID: 30862615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conversion of channelrhodopsin into a light-gated chloride channel.
    Wietek J; Wiegert JS; Adeishvili N; Schneider F; Watanabe H; Tsunoda SP; Vogt A; Elstner M; Oertner TG; Hegemann P
    Science; 2014 Apr; 344(6182):409-12. PubMed ID: 24674867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps.
    Reyer A; Häßler M; Scherzer S; Huang S; Pedersen JT; Al-Rascheid KAS; Bamberg E; Palmgren M; Dreyer I; Nagel G; Hedrich R; Becker D
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20920-20925. PubMed ID: 32788371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Channelrhodopsin-2 localised to the axon initial segment.
    Grubb MS; Burrone J
    PLoS One; 2010 Oct; 5(10):e13761. PubMed ID: 21048938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin-1.
    Tomita H; Sugano E; Murayama N; Ozaki T; Nishiyama F; Tabata K; Takahashi M; Saito T; Tamai M
    Mol Ther; 2014 Aug; 22(8):1434-1440. PubMed ID: 24821344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of glutamate 97 in ion influx through photo-activated channelrhodopsin-2.
    Tanimoto S; Sugiyama Y; Takahashi T; Ishizuka T; Yawo H
    Neurosci Res; 2013 Jan; 75(1):13-22. PubMed ID: 22664343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adjacent channelrhodopsin-2 residues within transmembranes 2 and 7 regulate cation selectivity and distribution of the two open states.
    Richards R; Dempski RE
    J Biol Chem; 2017 May; 292(18):7314-7326. PubMed ID: 28302720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A user's guide to channelrhodopsin variants: features, limitations and future developments.
    Lin JY
    Exp Physiol; 2011 Jan; 96(1):19-25. PubMed ID: 20621963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels.
    Berndt A; Schoenenberger P; Mattis J; Tye KM; Deisseroth K; Hegemann P; Oertner TG
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7595-600. PubMed ID: 21504945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride.
    Govorunova EG; Spudich EN; Lane CE; Sineshchekov OA; Spudich JL
    mBio; 2011; 2(3):e00115-11. PubMed ID: 21693637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser-evoked synaptic transmission in cultured hippocampal neurons expressing channelrhodopsin-2 delivered by adeno-associated virus.
    Wang J; Hasan MT; Seung HS
    J Neurosci Methods; 2009 Oct; 183(2):165-75. PubMed ID: 19560489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voltage- and temperature-dependent gating of heterologously expressed channelrhodopsin-2.
    Chater TE; Henley JM; Brown JT; Randall AD
    J Neurosci Methods; 2010 Oct; 193(1):7-13. PubMed ID: 20691205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Millisecond-timescale, genetically targeted optical control of neural activity.
    Boyden ES; Zhang F; Bamberg E; Nagel G; Deisseroth K
    Nat Neurosci; 2005 Sep; 8(9):1263-8. PubMed ID: 16116447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels.
    Ishizuka T; Kakuda M; Araki R; Yawo H
    Neurosci Res; 2006 Feb; 54(2):85-94. PubMed ID: 16298005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increases in intracellular calcium triggered by channelrhodopsin-2 potentiate the response of metabotropic glutamate receptor mGluR7.
    Caldwell JH; Herin GA; Nagel G; Bamberg E; Scheschonka A; Betz H
    J Biol Chem; 2008 Sep; 283(36):24300-7. PubMed ID: 18599484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light-induced helix movements in channelrhodopsin-2.
    Müller M; Bamann C; Bamberg E; Kühlbrandt W
    J Mol Biol; 2015 Jan; 427(2):341-9. PubMed ID: 25451024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The trafficking of bacterial type rhodopsins into the Chlamydomonas eyespot and flagella is IFT mediated.
    Awasthi M; Ranjan P; Sharma K; Veetil SK; Kateriya S
    Sci Rep; 2016 Oct; 6():34646. PubMed ID: 27694882
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants.
    Grossman N; Nikolic K; Toumazou C; Degenaar P
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1742-51. PubMed ID: 21324771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transmembrane domain three contributes to the ion conductance pathway of channelrhodopsin-2.
    Gaiko O; Dempski RE
    Biophys J; 2013 Mar; 104(6):1230-7. PubMed ID: 23528082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Channelrhodopsin-2-expressed dorsal root ganglion neurons activates calcium channel currents and increases action potential in spinal cord.
    Zhang Y; Yue J; Ai M; Ji Z; Liu Z; Cao X; Li L
    Spine (Phila Pa 1976); 2014 Jul; 39(15):E865-9. PubMed ID: 25171072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.