These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 19254568)

  • 1. Drosophila HNF4 regulates lipid mobilization and beta-oxidation.
    Palanker L; Tennessen JM; Lam G; Thummel CS
    Cell Metab; 2009 Mar; 9(3):228-39. PubMed ID: 19254568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. dHNF4 regulates lipid homeostasis and oogenesis in Drosophila melanogaster.
    Almeida-Oliveira F; Tuthill BF; Gondim KC; Majerowicz D; Musselman LP
    Insect Biochem Mol Biol; 2021 Jun; 133():103569. PubMed ID: 33753225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drosophila HNF4 Directs a Switch in Lipid Metabolism that Supports the Transition to Adulthood.
    Storelli G; Nam HJ; Simcox J; Villanueva CJ; Thummel CS
    Dev Cell; 2019 Jan; 48(2):200-214.e6. PubMed ID: 30554999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila HNF4 acts in distinct tissues to direct a switch between lipid storage and export in the gut.
    Vonolfen MC; Meyer Zu Altenschildesche FL; Nam HJ; Brodesser S; Gyenis A; Buellesbach J; Lam G; Thummel CS; Storelli G
    Cell Rep; 2024 Sep; 43(9):114693. PubMed ID: 39235946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sir2 Acts through Hepatocyte Nuclear Factor 4 to maintain insulin Signaling and Metabolic Homeostasis in Drosophila.
    Palu RA; Thummel CS
    PLoS Genet; 2016 Apr; 12(4):e1005978. PubMed ID: 27058248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of energy metabolism by long-chain fatty acids.
    Nakamura MT; Yudell BE; Loor JJ
    Prog Lipid Res; 2014 Jan; 53():124-44. PubMed ID: 24362249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila.
    Sieber MH; Thummel CS
    Cell Metab; 2009 Dec; 10(6):481-90. PubMed ID: 19945405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of fatty-acid-β-oxidation-related genes extends the lifespan of Drosophila melanogaster.
    Lee SH; Lee SK; Paik D; Min KJ
    Oxid Med Cell Longev; 2012; 2012():854502. PubMed ID: 22997544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NHR-49/HNF4 integrates regulation of fatty acid metabolism with a protective transcriptional response to oxidative stress and fasting.
    Goh GYS; Winter JJ; Bhanshali F; Doering KRS; Lai R; Lee K; Veal EA; Taubert S
    Aging Cell; 2018 Jun; 17(3):e12743. PubMed ID: 29508513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fat pad triacylglycerol fatty acid loss and oxidation as indices of total body triacylglycerol fatty acid mobilization and oxidation in starving mice.
    Lyon I; Ookhtens M; Montisano D; Baker N
    Biochim Biophys Acta; 1988 Feb; 958(2):188-98. PubMed ID: 3337834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the heterogeneous nuclear ribonucleoprotein (hnRNP) Hrb27C in regulating lipid storage in the Drosophila fat body.
    Bhogal JK; Kanaskie JM; DiAngelo JR
    Biochem Biophys Res Commun; 2020 Mar; 524(1):178-183. PubMed ID: 31982137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The α/β-hydrolase domain-containing 4- and 5-related phospholipase Pummelig controls energy storage in
    Hehlert P; Hofferek V; Heier C; Eichmann TO; Riedel D; Rosenberg J; Takaćs A; Nagy HM; Oberer M; Zimmermann R; Kühnlein RP
    J Lipid Res; 2019 Aug; 60(8):1365-1378. PubMed ID: 31164391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of adipokinetic hormone during starvation in Drosophila.
    Mochanová M; Tomčala A; Svobodová Z; Kodrík D
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Dec; 226():26-35. PubMed ID: 30110658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered lipid homeostasis in Drosophila InsP3 receptor mutants leads to obesity and hyperphagia.
    Subramanian M; Metya SK; Sadaf S; Kumar S; Schwudke D; Hasan G
    Dis Model Mech; 2013 May; 6(3):734-44. PubMed ID: 23471909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults.
    Barry WE; Thummel CS
    Elife; 2016 May; 5():. PubMed ID: 27185732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modified tandem affinity purification strategy identifies cofactors of the Drosophila nuclear receptor dHNF4.
    Yang P; Sampson HM; Krause HM
    Proteomics; 2006 Feb; 6(3):927-35. PubMed ID: 16400689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CCAAT/enhancer-binding protein CEBP-2 controls fat consumption and fatty acid desaturation in Caenorhabditis elegans.
    Xu XY; Hu JP; Wu MM; Wang LS; Fang NY
    Biochem Biophys Res Commun; 2015 Dec 4-11; 468(1-2):312-8. PubMed ID: 26505800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of energy stores and feeding by neuronal and peripheral CREB activity in Drosophila.
    Iijima K; Zhao L; Shenton C; Iijima-Ando K
    PLoS One; 2009 Dec; 4(12):e8498. PubMed ID: 20041126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PPARα/HNF4α interplay on diversified responsive elements. Relevance in the regulation of liver peroxisomal fatty acid catabolism.
    Chamouton J; Latruffe N
    Curr Drug Metab; 2012 Dec; 13(10):1436-53. PubMed ID: 22978398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glial β-oxidation regulates Drosophila energy metabolism.
    Schulz JG; Laranjeira A; Van Huffel L; Gärtner A; Vilain S; Bastianen J; Van Veldhoven PP; Dotti CG
    Sci Rep; 2015 Jan; 5():7805. PubMed ID: 25588812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.