These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19254703)

  • 61. Variations in unconditioned stimulus processing in unblocking.
    Holland PC; Kenmuir C
    J Exp Psychol Anim Behav Process; 2005 Apr; 31(2):155-71. PubMed ID: 15839773
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Love at first taste: Activation in reward-related brain regions during single-trial naturalistic appetitive conditioning in humans.
    A L; Sf M; Fh W; J M; J B
    Physiol Behav; 2020 Oct; 224():113014. PubMed ID: 32553642
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Anticipation is differently expressed in rats (Rattus norvegicus) and domestic cats (Felis silvestris catus) in the same Pavlovian conditioning paradigm.
    Bos Rv; Meijer MK; van Renselaar JP; van der Harst JE; Spruijt BM
    Behav Brain Res; 2003 Apr; 141(1):83-9. PubMed ID: 12672562
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Affective Valence Regulates Associative Competition in Pavlovian Conditioning.
    Laurent V; Westbrook RF; Balleine BW
    Front Behav Neurosci; 2022; 16():801474. PubMed ID: 35359587
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Correlation relationships of evoked activity of the auditory cortex and the amygdalae of cats during conditioned reflex activity.
    Vanetsian GL
    Neurosci Behav Physiol; 1992; 22(6):512-8. PubMed ID: 1480262
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Behavioral and Auditory Electrophysiological Rebound as a Compensatory Response to the Reinforcing Effects of Morphine.
    Paliarin F; Incrocci RM; Nobre MJ
    Neuroscience; 2018 Nov; 392():66-76. PubMed ID: 30267831
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Discrete coding of stimulus value, reward expectation, and reward prediction error in the dorsal striatum.
    Oyama K; Tateyama Y; Hernádi I; Tobler PN; Iijima T; Tsutsui K
    J Neurophysiol; 2015 Nov; 114(5):2600-15. PubMed ID: 26378201
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Changes in early acoustic-evoked potentials by mildly arousing priming stimuli in carp (Cyprinus carpio).
    Laming PR; Bullock TH
    Comp Biochem Physiol A Comp Physiol; 1991; 99(4):567-75. PubMed ID: 1679693
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Training-Dependent Change in Content of Association in Appetitive Pavlovian Conditioning.
    Kim HJ; Koh HY
    Front Behav Neurosci; 2021; 15():750131. PubMed ID: 34899203
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The effect of two ways of devaluing the unconditioned stimulus after first- and second-order appetitive conditioning.
    Hollland PC; Rescorla RA
    J Exp Psychol Anim Behav Process; 1975 Oct; 1(4):355-63. PubMed ID: 1202141
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Auto-shaping or orienting?
    Buzsáki G; Grastyán E; Molnár P; Tveritskaya IN; Haubenreiser J
    Acta Neurobiol Exp (Wars); 1979; 39(4):179-200. PubMed ID: 506810
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Middle and long latency auditory evoked potentials in cat. II. Component distributions and dependence on stimulus factors.
    Starr A; Farley GR
    Hear Res; 1983 May; 10(2):139-52. PubMed ID: 6863153
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Pavlovian craver: Neural and experiential correlates of single trial naturalistic food conditioning in humans.
    Blechert J; Testa G; Georgii C; Klimesch W; Wilhelm FH
    Physiol Behav; 2016 May; 158():18-25. PubMed ID: 26905451
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Involvement of the amygdala in evaluating the biological significance of conditioned stimuli.
    Suvorov NF; Danilova LK; Shefer SI; Shuvaev VT
    Neurosci Behav Physiol; 1985; 15(6):494-501. PubMed ID: 4094682
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cross-paradigm integration shows a common neural basis for aversive and appetitive conditioning.
    Klein S; Kruse O; Tapia León I; Van Oudenhove L; van 't Hof SR; Klucken T; Wager TD; Stark R
    Neuroimage; 2022 Nov; 263():119594. PubMed ID: 36041642
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Unit-activity in the central amygdalar nucleus of rats in response to immobilization--stress.
    Henke PG
    Brain Res Bull; 1983 Jun; 10(6):833-7. PubMed ID: 6616273
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The neural substrates of higher-order conditioning: A review.
    Holmes NM; Fam JP; Clemens KJ; Laurent V; Westbrook RF
    Neurosci Biobehav Rev; 2022 Jul; 138():104687. PubMed ID: 35561894
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Consideration of a unified model of amygdalar associative functions.
    Gabriel M; Burhans L; Kashef A
    Ann N Y Acad Sci; 2003 Apr; 985():206-17. PubMed ID: 12724160
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reward learning requires activity of matrix metalloproteinase-9 in the central amygdala.
    Knapska E; Lioudyno V; Kiryk A; Mikosz M; Górkiewicz T; Michaluk P; Gawlak M; Chaturvedi M; Mochol G; Balcerzyk M; Wojcik DK; Wilczynski GM; Kaczmarek L
    J Neurosci; 2013 Sep; 33(36):14591-600. PubMed ID: 24005309
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Human Pavlovian HR decelerative conditioning with negative tilt as US: a review of some S-R, stimulus-substitution evidence.
    Furedy JJ; Shulhan D; Randall DC
    Int J Psychophysiol; 1989 Mar; 7(1):19-23. PubMed ID: 2647686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.